Skip to main content
Log in

How vital is sleep in Huntington’s disease?

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by an abnormal expansion of a CAG repeat in exon 1 of the HD gene on chromosome 4. The disease runs a debilitating and progressive course with an average survival of 15–25 years after disease onset. HD patients classically develop involuntary movements including chorea, as well as progressive cognitive and psychiatric disturbances, although a number of other features have also been reported, including changes in sleep and circadian rhythms; it is this latter area that forms the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alam MN, McGinty D, Bashir T, Kumar S, Imeri L, Opp MR, Szymusiak R (2004) Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation. Eur J Neurosci 20:207–216

    PubMed  Google Scholar 

  2. Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145–151

    CAS  PubMed  Google Scholar 

  3. Arnulf I, Nielsen J, Lohmann E, Schieffer J, Wild E, Jennum P, Konofal E, Walker M, Oudiette D, Tabrizi S, Durr A (2008) Rapid eye movement sleep disturbances in Huntington disease. Arch Neurol 65:482–488

    PubMed  Google Scholar 

  4. Aserinsky E (1996) The discovery of REM sleep. J Hist Neurosci 5:213–227

    CAS  PubMed  Google Scholar 

  5. Aziz A, Fronczek R, Maat-Schieman M, Unmehopa U, Roelandse F, Overeem S, van DS, Lammers GJ, Swaab D, Roos R (2008) Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol 18:474–483

    Google Scholar 

  6. Aziz NA, van der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T, EHDI Study Group, Roos RA (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71:1506–1513

    CAS  PubMed  Google Scholar 

  7. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep–wake regulation. Prog Neurobiol 73:379–396

    CAS  PubMed  Google Scholar 

  8. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    CAS  PubMed  Google Scholar 

  9. Berger RJ (1975) Bioenergetic functions of sleep and activity rhythms and their possible relevance to aging. Fed Proc 34:97–102

    CAS  PubMed  Google Scholar 

  10. Bergmann BM, Everson CA, Kushida CA, Fang VS, Leitch CA, Schoeller DA, Refetoff S, Rechtschaffen A (1989) Sleep deprivation in the rat: V. Energy use and mediation. Sleep 12:31–41

    CAS  PubMed  Google Scholar 

  11. Berson DM (2007) Phototransduction in ganglion-cell photoreceptors. Pflugers Arch 454:849–855

    CAS  PubMed  Google Scholar 

  12. Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F Jr, Krueger JM (2004) Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 287:R1071–R1079

    CAS  PubMed  Google Scholar 

  13. Boeve BF, Silber MH, Ferman TJ (2004) REM sleep behavior disorder in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 17:146–157

    PubMed  Google Scholar 

  14. Bollen EL, Den Heijer JC, Ponsioen C, Kramer C, Van der Velde EA, van Dijk JG, Roos RA, Kamphuisen HA, Buruma OJ (1988) Respiration during sleep in Huntington’s chorea. J Neurol Sci 84:63–68

    CAS  PubMed  Google Scholar 

  15. Born J, Wagner U (2004) Awareness in memory: being explicit about the role of sleep. Trends Cogn Sci 8:242–244

    PubMed  Google Scholar 

  16. Brunner H, Wetter TC, Hogl B, Yassouridis A, Trenkwalder C, Friess E (2002) Microstructure of the non-rapid eye movement sleep electroencephalogram in patients with newly diagnosed Parkinson’s disease: effects of dopaminergic treatment. Mov Disord 17:928–933

    PubMed  Google Scholar 

  17. Carskadon MA (2004) Sleep deprivation: health consequences and societal impact. Med Clin North Am 88:767–776

    PubMed  Google Scholar 

  18. Cheng B, Mattson MP (1994) NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 640:56–67

    CAS  PubMed  Google Scholar 

  19. Chokroverty S (1996) Sleep and degenerative neurologic disorders. Neurol Clin 14:807–826

    CAS  PubMed  Google Scholar 

  20. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23:10691–10702

    CAS  PubMed  Google Scholar 

  21. Churchill L, Rector DM, Yasuda K, Fix C, Rojas MJ, Yasuda T, Krueger JM (2008) Tumor necrosis factor alpha: activity dependent expression and promotion of cortical column sleep in rats. Neuroscience 156:71–80

    CAS  PubMed  Google Scholar 

  22. Comella CL, Nardine TM, Diederich NJ, Stebbins GT (1998) Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson’s disease. Neurology 51:526–529

    CAS  PubMed  Google Scholar 

  23. Corsi-Cabrera M, Grinberg-Zylberbaum J, Arditti LS (1975) Caudate nucleus lesion selectively increases paradoxical sleep episodes in the rat. Physiol Behav 14:7–11

    CAS  PubMed  Google Scholar 

  24. Craufurd D, Thompson JC, Snowden JS (2001) Behavioral changes in Huntington Disease. Neuropsychiatry Neuropsychol Behav Neurol 14:219–226

    CAS  PubMed  Google Scholar 

  25. Davis KL, Davis BM, Greenwald BS, Mohs RC, Mathe AA, Johns CA, Horvath TB (1986) Cortisol and Alzheimer’s disease, I: basal studies. Am J Psychiatry 143:300–305

    CAS  PubMed  Google Scholar 

  26. de la Monte SM, Vonsattel JP, Richardson E P Jr (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 47:516–525

    Google Scholar 

  27. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    PubMed  Google Scholar 

  28. De SG, Gareri P, Sinopoli VA, David E, Rotiroti D (1997) Comparative, behavioural and electrocortical effects of tumor necrosis factor-alpha and interleukin-1 microinjected into the locus coeruleus of rat. Life Sci 60:555–564

    Google Scholar 

  29. Dement WC, Miles LE, Carskadon MA (1982) ‘White paper’ on sleep and aging. J Am Geriatr Soc 30:25–50

    CAS  PubMed  Google Scholar 

  30. Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130:165–183

    CAS  PubMed  Google Scholar 

  31. Djousse L, Knowlton B, Cupples LA, Marder K, Shoulson I, Myers RH (2002) Weight loss in early stage of Huntington’s disease. Neurology 59:1325–1330

    CAS  PubMed  Google Scholar 

  32. Dom R, Malfroid M, Baro F (1976) Neuropathology of Huntington’s chorea. Studies of the ventrobasal complex of the thalamus. Neurology 26:64–68

    CAS  PubMed  Google Scholar 

  33. Duan W, Guo Z, Mattson MP (2001) Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. J Neurochem 76:619–626

    CAS  PubMed  Google Scholar 

  34. Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62:1341–1346

    PubMed  Google Scholar 

  35. Ellenbogen JM (2005) Cognitive benefits of sleep and their loss due to sleep deprivation. Neurology 64:E25–E27

    PubMed  Google Scholar 

  36. Emser W, Brenner M, Stober T, Schimrigk K (1988) Changes in nocturnal sleep in Huntington’s and Parkinson’s disease. J Neurol 235:177–179

    CAS  PubMed  Google Scholar 

  37. Evers S, Stogbauer F (2003) Genetic association of Huntington’s disease and restless legs syndrome? A family report. Mov Disord 18:225–227

    PubMed  Google Scholar 

  38. Everson CA (1995) Functional consequences of sustained sleep deprivation in the rat. Behav Brain Res 69:43–54

    CAS  PubMed  Google Scholar 

  39. Fahrenkrug J, Popovic N, Georg B, Brundin P, Hannibal J (2007) Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J Mol Neurosci 31:139–148

    CAS  PubMed  Google Scholar 

  40. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28:4088–4095

    CAS  PubMed  Google Scholar 

  41. Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27:62–67

    CAS  PubMed  Google Scholar 

  42. Farrer LA, Meaney FJ (1985) An anthropometric assessment of Huntington’s disease patients and families. Am J Phys Anthropol 67:185–194

    CAS  PubMed  Google Scholar 

  43. Farrer LA, Yu PL (1985) Anthropometric discrimination among affected, at-risk, and not-at-risk individuals in families with Huntington disease. Am J Med Genet 21:307–316

    CAS  PubMed  Google Scholar 

  44. Fava M (2004) Daytime sleepiness and insomnia as correlates of depression. J Clin Psychiatry 65 Suppl 16:27–32

    PubMed  Google Scholar 

  45. Ferrari E, Nappi G, Vailati A, Martignoni E, Bossolo PA, Polleri A (1979) Circadian periodicity of plasma prolactin in some neurological diseases. Int J Chronobiol 6:231–242

    CAS  PubMed  Google Scholar 

  46. Ferrer I, Goutan E, Marin C, Rey MJ, Ribalta T (2000) Brain-derived neurotrophic factor in Huntington disease. Brain Res 866:257–261

    CAS  PubMed  Google Scholar 

  47. Fish DR, Sawyers D, Allen PJ, Blackie JD, Lees AJ, Marsden CD (1991) The effect of sleep on the dyskinetic movements of Parkinson’s disease, Gilles de la Tourette syndrome, Huntington’s disease, and torsion dystonia. Arch Neurol 48:210–214

    CAS  PubMed  Google Scholar 

  48. Foster RG, Wulff K (2005) The rhythm of rest and excess. Nat Rev Neurosci 6:407–414

    CAS  PubMed  Google Scholar 

  49. Frucht S, Rogers JD, Greene PE, Gordon MF, Fahn S (1999) Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology 52:1908–1910

    CAS  PubMed  Google Scholar 

  50. Gaba AM, Zhang K, Marder K, Moskowitz CB, Werner P, Boozer CN (2005) Energy balance in early-stage Huntington disease. Am J Clin Nutr 81:1335–1341

    CAS  PubMed  Google Scholar 

  51. Gagnon JF, Bedard MA, Fantini ML, Petit D, Panisset M, Rompre S, Carrier J, Montplaisir J (2002) REM sleep behavior disorder and REM sleep without atonia in Parkinson’s disease. Neurology 59:585–589

    CAS  PubMed  Google Scholar 

  52. Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995

    CAS  PubMed  Google Scholar 

  53. Gaus SE, Lin L, Mignot E (2005) CSF hypocretin levels are normal in Huntington’s disease patients. Sleep 28:1607–1608

    PubMed  Google Scholar 

  54. Ghilardi MF, Silvestri G, Feigin A, Mattis P, Zgaljardic D, Moisello C, Crupi D, Marinelli L, Dirocco A, Eidelberg D (2008) Implicit and explicit aspects of sequence learning in pre-symptomatic Huntington’s disease. Parkinsonism Relat Disord 14:457–464

    CAS  PubMed  Google Scholar 

  55. Goodman AO, Murgatroyd PR, Medina-Gomez G, Wood NI, Finer N, Vidal-Puig AJ, Morton AJ, Barker RA (2008) The metabolic profile of early Huntington’s disease—a combined human and transgenic mouse study. Exp Neurol 210:691–698

    CAS  PubMed  Google Scholar 

  56. Grofova I, Zhou M (1998) Nigral innervation of cholinergic and glutamatergic cells in the rat mesopontine tegmentum: light and electron microscopic anterograde tracing and immunohistochemical studies. J Comp Neurol 395:359–379

    CAS  PubMed  Google Scholar 

  57. Hahn-Barma V, Deweer B, Durr A, Dode C, Feingold J, Pillon B, Agid Y, Brice A, Dubois B (1998) Are cognitive changes the first symptoms of Huntington’s disease? A study of gene carriers. J Neurol Neurosurg Psychiatry 64:172–177

    CAS  PubMed  Google Scholar 

  58. Hamilton JM, Salmon DP, Corey-Bloom J, Gamst A, Paulsen JS, Jerkins S, Jacobson MW, Peavy G (2003) Behavioural abnormalities contribute to functional decline in Huntington’s disease. J Neurol Neurosurg Psychiatry 74:120–122

    CAS  PubMed  Google Scholar 

  59. Hamilton JM, Wolfson T, Peavy GM, Jacobson MW, Corey-Bloom J (2004) Rate and correlates of weight change in Huntington’s disease. J Neurol Neurosurg Psychiatry 75:209–212

    CAS  PubMed  Google Scholar 

  60. Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36

    CAS  PubMed  Google Scholar 

  61. Hansotia P, Wall R, Berendes J (1985) Sleep disturbances and severity of Huntington’s disease. Neurology 35:1672–1674

    CAS  PubMed  Google Scholar 

  62. Happe S (2003) Excessive daytime sleepiness and sleep disturbances in patients with neurological diseases: epidemiology and management. Drugs 63:2725–2737

    PubMed  Google Scholar 

  63. Happe S, Berger K (2001) The association of dopamine agonists with daytime sleepiness, sleep problems and quality of life in patients with Parkinson’s disease—a prospective study. J Neurol 248:1062–1067

    CAS  PubMed  Google Scholar 

  64. Harper PS (1992) The epidemiology of Huntington’s disease. Hum Genet 89:365–376

    CAS  PubMed  Google Scholar 

  65. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    CAS  PubMed  Google Scholar 

  66. Hayashi Y (1979) The all-night polygraphies for healthy aged persons (1st report)—with special reference to sleep characteristics of the aged persons (author’s transl). Rinsho Shinkeigaku 19:653–660

    CAS  PubMed  Google Scholar 

  67. Hindmarch I, Dawson J, Stanley N (2005) A double-blind study in healthy volunteers to assess the effects on sleep of pregabalin compared with alprazolam and placebo. Sleep 28:187–193

    PubMed  Google Scholar 

  68. Ho AK, Robbins AO, Barker RA (2006) Huntington’s disease patients have selective problems with insight. Mov Disord 21:385–389

    PubMed  Google Scholar 

  69. Hockly E, Cordery PM, Woodman B, Mahal A, van Dellen A, Blakemore C, Lewis CM, Hannan AJ, Bates GP (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol 51:235–242

    PubMed  Google Scholar 

  70. Hoth KF, Paulsen JS, Moser DJ, Tranel D, Clark LA, Bechara A (2007) Patients with Huntington’s disease have impaired awareness of cognitive, emotional, and functional abilities. J Clin Exp Neuropsychol 29:365–376

    PubMed  Google Scholar 

  71. Hurelbrink CB, Lewis SJ, Barker RA (2005) The use of the Actiwatch-Neurologica system to objectively assess the involuntary movements and sleep–wake activity in patients with mild-moderate Huntington’s disease. J Neurol 252:642–647

    Google Scholar 

  72. Jech R, Klempir J, Vymazal J, Zidovska J, Klempirova O, Ruzicka E, Roth J (2007) Variation of selective gray and white matter atrophy in Huntington’s disease. Mov Disord 22:1783–1789

    PubMed  Google Scholar 

  73. Jernigan TL, Salmon DP, Butters N, Hesselink JR (1991) Cerebral structure on MRI, Part II: specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry 29:68–81

    CAS  PubMed  Google Scholar 

  74. Jewett ME, Dijk DJ, Kronauer RE, Dinges DF (1999) Dose–response relationship between sleep duration and human psychomotor vigilance and subjective alertness. Sleep 22:171–179

    CAS  PubMed  Google Scholar 

  75. Julien CL, Thompson JC, Wild S, Yardumian P, Snowden JS, Turner G, Craufurd D (2007) Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry 78:939–943

    PubMed  Google Scholar 

  76. Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J, Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ, Ludolph AC, Landwehrmeyer GB (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75:213–220

    CAS  PubMed  Google Scholar 

  77. Kodama T, Honda Y (1999) Acetylcholine and glutamate release during sleep–wakefulness in the pedunculopontine tegmental nucleus and norepinephrine changes regulated by nitric oxide. Psychiatry Clin Neurosci 53:109–111

    CAS  PubMed  Google Scholar 

  78. Koella WP (1984) The organization and regulation of sleep. A review of the experimental evidence and a novel integrated model of the organizing and regulating apparatus. Experientia 40:309–338

    CAS  PubMed  Google Scholar 

  79. Kremer B, Weber B, Hayden MR (1992) New insights into the clinical features, pathogenesis and molecular genetics of Huntington disease. Brain Pathol 2:321–335

    CAS  PubMed  Google Scholar 

  80. Kremer HP, Roos RA (1992) Weight loss in Huntington’s disease. Arch Neurol 49:349

    CAS  PubMed  Google Scholar 

  81. Kremer HP, Roos RA, Dingjan G, Marani E, Bots GT (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49:371–382

    CAS  PubMed  Google Scholar 

  82. Krueger JM, Obal F (1993) A neuronal group theory of sleep function. J Sleep Res 2:63–69

    PubMed  Google Scholar 

  83. Krueger JM, Obal F Jr (2003) Sleep function. Front Biosci 8:d511–d519

    CAS  PubMed  Google Scholar 

  84. Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919

    CAS  PubMed  Google Scholar 

  85. Kubitz KA, Landers DM, Petruzzello SJ, Han M (1996) The effects of acute and chronic exercise on sleep. A meta-analytic review. Sports Med 21:277–291

    CAS  PubMed  Google Scholar 

  86. Kumar S, Bhatia M, Behari M (2002) Sleep disorders in Parkinson’s disease. Mov Disord 17:775–781

    PubMed  Google Scholar 

  87. Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 12:22–30

    CAS  PubMed  Google Scholar 

  88. Kwok EH, Dun NJ (2002) Orexin/hypocretin system: obesity, narcolepsy and beyond. Drug News Perspect 15:166–174

    CAS  PubMed  Google Scholar 

  89. Lamont EW, James FO, Boivin DB, Cermakian N (2007) From circadian clock gene expression to pathologies. Sleep Med 8:547–556

    PubMed  Google Scholar 

  90. Laureys S, Peigneux P, Perrin F, Maquet P (2002) Sleep and motor skill learning. Neuron 35:5–7

    CAS  PubMed  Google Scholar 

  91. Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbussche E, Dom R (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation—a longitudinal follow-up study. J.Neurol 251:935–942

    CAS  PubMed  Google Scholar 

  92. Leproult R, Copinschi G, Buxton O, Van Cauter E (1997) Sleep loss results in an elevation of cortisol levels the next evening. Sleep 20:865–870

    CAS  PubMed  Google Scholar 

  93. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    CAS  PubMed  Google Scholar 

  94. Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20:3830–3842

    CAS  PubMed  Google Scholar 

  95. Lynch WJ, Girgenti MJ, Breslin FJ, Newton SS, Taylor JR (2008) Gene profiling the response to repeated cocaine self-administration in dorsal striatum: a focus on circadian genes. Brain Res 1213:166–177

    Google Scholar 

  96. Manfridi A, Brambilla D, Bianchi S, Mariotti M, Opp MR, Imeri L (2003) Interleukin-1beta enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur J Neurosci 18:1041–1049

    PubMed  Google Scholar 

  97. Mano T, Shiozawa Z, Sobue I (1982) Extrapyramidal involuntary movements during sleep. Electroencephalogr Clin Neurophysiol Suppl 431–442

  98. Masucci EF, Borts FT, Kurtzke JF (1990) CT brainstem abnormalities in the differential diagnosis of Huntington’s disease. Comput Med Imaging Graph 14:205–212

    CAS  PubMed  Google Scholar 

  99. McGinty D, Szymusiak R (2000) The sleep–wake switch: a neuronal alarm clock. Nat Med 6:510–511

    CAS  PubMed  Google Scholar 

  100. Mena-Segovia J, Cintra L, Prospero-Garcia O, Giordano M (2002) Changes in sleep-waking cycle after striatal excitotoxic lesions. Behav Brain Res 136:475–481

    PubMed  Google Scholar 

  101. Mitler MM, Carskadon MA, Czeisler CA, Dement WC, Dinges DF, Graeber RC (1988) Catastrophes, sleep, and public policy: consensus report. Sleep 11:100–109

    CAS  PubMed  Google Scholar 

  102. Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29

    PubMed  Google Scholar 

  103. Montplaisir J, Petit D, Lorrain D, Gauthier S, Nielsen T (1995) Sleep in Alzheimer’s disease: further considerations on the role of brainstem and forebrain cholinergic populations in sleep–wake mechanisms. Sleep 18:145–148

    CAS  PubMed  Google Scholar 

  104. Moore RY (2007) Suprachiasmatic nucleus in sleep–wake regulation. Sleep Med 8 Suppl 3:27–33

    PubMed  Google Scholar 

  105. Morales LM, Estevez J, Suarez H, Villalobos R, Chacin d B, Bonilla E (1989) Nutritional evaluation of Huntington disease patients. Am J Clin Nutr 50:145–150

    CAS  PubMed  Google Scholar 

  106. Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES (2005) Disintegration of the sleep–wake cycle and circadian timing in Huntington’s disease. J Neurosci 25:157–163

    CAS  PubMed  Google Scholar 

  107. Moruzzi G, Magoun HW (1995) Brain stem reticular formation and activation of the EEG. 1949. J Neuropsychiatry Clin Neurosci 7:251–267

    CAS  PubMed  Google Scholar 

  108. Muhlau M, Weindl A, Wohlschlager AM, Gaser C, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm 114:367–372

    CAS  PubMed  Google Scholar 

  109. Mullington JM, Chan JL, Van Dongen HP, Szuba MP, Samaras J, Price NJ, Meier-Ewert HK, Dinges DF, Mantzoros CS (2003) Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol 15:851–854

    CAS  PubMed  Google Scholar 

  110. O’Connor PJ, Youngstedt SD (1995) Influence of exercise on human sleep. Exerc Sport Sci Rev 23:105–134

    PubMed  Google Scholar 

  111. Obal F Jr, Krueger JM (2003) Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 8:d520–d550

    CAS  PubMed  Google Scholar 

  112. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV (2004) Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27:1255–1273

    PubMed  Google Scholar 

  113. Ondo WG, Dat VK, Khan H, Atassi F, Kwak C, Jankovic J (2001) Daytime sleepiness and other sleep disorders in Parkinson’s disease. Neurology 57:1392–1396

    CAS  PubMed  Google Scholar 

  114. Oyanagi K, Takeda S, Takahashi H, Ohama E, Ikuta F (1989) A quantitative investigation of the substantia nigra in Huntington’s disease. Ann Neurol 26:13–19

    CAS  PubMed  Google Scholar 

  115. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    CAS  PubMed  Google Scholar 

  116. Pallier PN, Maywood ES, Zheng Z, Chesham JE, Inyushkin AN, Dyball R, Hastings MH, Morton AJ (2007) Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington’s disease. J Neurosci 27:7869–7878

    CAS  PubMed  Google Scholar 

  117. Pallier PN, Morton AJ (2009) Management of sleep/wake cycles improves cognitive function in a transgenic mouse model of Huntington’s disease. Brain Res 1279:90–98

    CAS  PubMed  Google Scholar 

  118. Patel SR, Redline S (2004) Two epidemics: are we getting fatter as we sleep less? Sleep 27:602–603

    PubMed  Google Scholar 

  119. Paulsen JS, Nehl C, Hoth KF, Kanz JE, Benjamin M, Conybeare R, McDowell B, Turner B (2005) Depression and stages of Huntington’s disease. J Neuropsychiatry Clin Neurosci 17:496–502

    PubMed  Google Scholar 

  120. Paulsen JS, Ready RE, Hamilton JM, Mega MS, Cummings JL (2001) Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 71:310–314

    CAS  PubMed  Google Scholar 

  121. Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, Phillips C, Degueldre C, Del FG, Aerts J, Luxen A, Maquet P (2004) Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44:535–545

    CAS  PubMed  Google Scholar 

  122. Petersen A, Gil J, Maat-Schieman ML, Bjorkqvist M, Tanila H, Araujo IM, Smith R, Popovic N, Wierup N, Norlen P, Li JY, Roos RA, Sundler F, Mulder H, Brundin P (2005) Orexin loss in Huntington’s disease. Hum Mol Genet 14:39–47

    CAS  PubMed  Google Scholar 

  123. Petit D, Gagnon JF, Fantini ML, Ferini-Strambi L, Montplaisir J (2004) Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res 56:487–496

    PubMed  Google Scholar 

  124. Peyron C, Tighe DK, van den Pol AN, de LL, Heller HC, Sutcliffe JG Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    Google Scholar 

  125. Piggins HD, Loudon A (2005) Circadian biology: clocks within clocks. Curr Biol 15:R455–R457

    CAS  PubMed  Google Scholar 

  126. Plazzi G, Corsini R, Provini F, Pierangeli G, Martinelli P, Montagna P, Lugaresi E, Cortelli P (1997) REM sleep behavior disorders in multiple system atrophy. Neurology 48:1094–1097

    CAS  PubMed  Google Scholar 

  127. Plihal W, Born J (1999) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36:571–582

    CAS  PubMed  Google Scholar 

  128. Podolsky S, Leopold NA, Sax DS (1972) Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet 1:1356–1358

    CAS  PubMed  Google Scholar 

  129. Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P (2008) Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain 131:2860–2869

    PubMed  Google Scholar 

  130. Popovic V, Svetel M, Djurovic M, Petrovic S, Doknic M, Pekic S, Miljic D, Milic N, Glodic J, Dieguez C, Casanueva FF, Kostic V (2004) Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in Huntington’s disease. Eur J Endocrinol 151:451–455

    CAS  PubMed  Google Scholar 

  131. Postuma RB, Gagnon JF, Vendette M, Fantini ML, Massicotte-Marquez J, Montplaisir J (2009) Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 72:1296–1300

    Google Scholar 

  132. Pratley RE, Salbe AD, Ravussin E, Caviness JN (2000) Higher sedentary energy expenditure in patients with Huntington’s disease. Ann Neurol 47:64–70

    CAS  PubMed  Google Scholar 

  133. Prinz PN, Vitaliano PP, Vitiello MV, Bokan J, Raskind M, Peskind E, Gerber C (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer’s type. Neurobiol Aging 3:361–370

    CAS  PubMed  Google Scholar 

  134. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE (2004) Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 160:521–530

    PubMed  Google Scholar 

  135. Qin Z, Zhang L, Sun F, Fang X, Meng C, Tanner C, Chan P (2009) Health related quality of life in early Parkinson’s disease: impact of motor and non-motor symptoms, results from Chinese levodopa exposed cohort. Parkinsonism Relat Disord 15:767–771

    PubMed  Google Scholar 

  136. Ready RE, Mathews M, Leserman A, Paulsen JS (2008) Patient and caregiver quality of life in Huntington’s disease. Mov Disord 23:721–726

    PubMed  Google Scholar 

  137. Rechtschaffen A, Bergmann BM, Everson CA, Kushida CA, Gilliland MA (2002) Sleep deprivation in the rat: X. Integration and discussion of the findings. 1989. Sleep 25:68–87

    PubMed  Google Scholar 

  138. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, technique and scoring system for sleep stages of human sleep. Brain Information Service, Los Angeles

    Google Scholar 

  139. Robbins AO, Ho AK, Barker RA (2006) Weight changes in Huntington’s disease. Eur J Neurol 13:e7

    CAS  PubMed  Google Scholar 

  140. Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    CAS  PubMed  Google Scholar 

  141. Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B, Greve D, Hevelone N, Hersch SM (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068

    PubMed  Google Scholar 

  142. Rosenblatt A (2007) Neuropsychiatry of Huntington’s disease. Dialogues Clin Neurosci 9:191–197

    PubMed  Google Scholar 

  143. Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci USA 105:15593–15598

    CAS  PubMed  Google Scholar 

  144. Sanberg PR, Fibiger HC, Mark RF (1981) Body weight and dietary factors in Huntington’s disease patients compared with matched controls. Med J Aust 1:407–409

    CAS  PubMed  Google Scholar 

  145. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    CAS  PubMed  Google Scholar 

  146. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    CAS  PubMed  Google Scholar 

  147. Schapira AH (2000) Sleep attacks (sleep episodes) with pergolide. Lancet 355:1332–1333

    CAS  PubMed  Google Scholar 

  148. Scheen AJ, Van Cauter E (1998) The roles of time of day and sleep quality in modulating glucose regulation: clinical implications. Horm Res 49:191–201

    CAS  PubMed  Google Scholar 

  149. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828

    Article  PubMed  Google Scholar 

  150. Scott DF, Heathfield KW, Toone B, Margerison JH (1972) The EEG in Huntington’s chorea: a clinical and neuropathological study. J Neurol Neurosurg Psychiatry 35:97–102

    CAS  PubMed  Google Scholar 

  151. Sephton S, Spiegel D (2003) Circadian disruption in cancer: a neuroendocrine–immune pathway from stress to disease? Brain Behav Immun 17:321–328

    CAS  PubMed  Google Scholar 

  152. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219

    CAS  PubMed  Google Scholar 

  153. Sherrill DL, Kotchou K, Quan SF (1998) Association of physical activity and human sleep disorders. Arch Intern Med 158:1894–1898

    CAS  PubMed  Google Scholar 

  154. Shibata M (1990) Hypothalamic neuronal responses to cytokines. Yale J Biol Med 63:147–156

    CAS  PubMed  Google Scholar 

  155. Shiwach R (1994) Psychopathology in Huntington’s disease patients. Acta Psychiatr Scand 90:241–246

    CAS  PubMed  Google Scholar 

  156. Siegel JM (2009) Sleep viewed as a state of adaptive inactivity. Nat Rev Neurosci 10:747–753

    CAS  PubMed  Google Scholar 

  157. Silvestri R, Raffaele M, De Domenico P, Tisano A, Mento G, Casella C, Tripoli MC, Serra S, Di Perri R (1995) Sleep features in Tourette’s syndrome, neuroacanthocytosis and Huntington’s chorea. Neurophysiol Clin 25:66–77

    CAS  PubMed  Google Scholar 

  158. Sishta SK, Troupe A, Marszalek KS, Kremer LM (1974) Huntington’s chorea: an electroencephalographic and psychometric study. Electroencephalogr Clin Neurophysiol 36:387–393

    CAS  PubMed  Google Scholar 

  159. Spiegel K, Leproult R, L’hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E (2004) Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89:5762–5771

    CAS  PubMed  Google Scholar 

  160. Steininger TL, Gong H, McGinty D, Szymusiak R (2001) Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 429:638–653

    CAS  PubMed  Google Scholar 

  161. Steriade M (2003) The corticothalamic system in sleep. Front Biosci 8:d878–d899

    CAS  PubMed  Google Scholar 

  162. Stoy N, McKay E (2000) Weight loss in Huntington’s disease. Ann Neurol 48:130–131

    CAS  PubMed  Google Scholar 

  163. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115:183–204

    CAS  PubMed  Google Scholar 

  164. Swaab DF, Hofman MA, Lucassen PJ, Purba JS, Raadsheer FC, Van de Nes JA (1993) Functional neuroanatomy and neuropathology of the human hypothalamus. Anat Embryol (Berl) 187:317–330

    CAS  Google Scholar 

  165. Tachibana N, Oka Y (2004) Longitudinal change in REM sleep components in a patient with multiple system atrophy associated with REM sleep behavior disorder: paradoxical improvement of nocturnal behaviors in a progressive neurodegenerative disease. Sleep Med 5:155–158

    PubMed  Google Scholar 

  166. Taheri S, Lin L, Austin D, Young T, Mignot E (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1:e62

    PubMed  Google Scholar 

  167. Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775

    CAS  PubMed  Google Scholar 

  168. Taylor N, Bramble D (1997) Sleep disturbance and Huntingdon’s disease. Br J Psychiatry 171:393

    CAS  PubMed  Google Scholar 

  169. Tietzel AJ, Lack LC (2002) The recuperative value of brief and ultra-brief naps on alertness and cognitive performance. J Sleep Res 11:213–218

    PubMed  Google Scholar 

  170. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    CAS  PubMed  Google Scholar 

  171. Van Someren EJ (2000) Circadian and sleep disturbances in the elderly. Exp Gerontol 35:1229–1237

    PubMed  Google Scholar 

  172. Videnovic A, Leurgans S, Fan W, Jaglin J, Shannon KM (2009) Daytime somnolence and nocturnal sleep disturbances in Huntington disease. Parkinsonism Relat Disord 15:471–474

    Google Scholar 

  173. Villablanca J (1972) Permanent reduction in sleep after removal of cerebral cortex and striatum in cats. Brain Res 36:463–468

    CAS  PubMed  Google Scholar 

  174. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson E P Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    CAS  PubMed  Google Scholar 

  175. Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252

    CAS  PubMed  Google Scholar 

  176. Wetter TC, Collado-Seidel V, Pollmacher T, Yassouridis A, Trenkwalder C (2000) Sleep and periodic leg movement patterns in drug-free patients with Parkinson’s disease and multiple system atrophy. Sleep 23:361–367

    CAS  PubMed  Google Scholar 

  177. Wiegand M, Moller AA, Lauer CJ, Stolz S, Schreiber W, Dose M, Krieg JC (1991) Nocturnal sleep in Huntington’s disease. J Neurol 238:203–208

    CAS  PubMed  Google Scholar 

  178. Youngstedt SD, O’Connor PJ, Dishman RK (1997) The effects of acute exercise on sleep: a quantitative synthesis. Sleep 20:203–214

    CAS  PubMed  Google Scholar 

  179. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our own work in this area has been supported by the High Q/CHDI organization and an NIHR Medical Research Centre award to the University of Cambridge/Addenbrooke’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna O. G. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, A.O.G., Barker, R.A. How vital is sleep in Huntington’s disease?. J Neurol 257, 882–897 (2010). https://doi.org/10.1007/s00415-010-5517-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5517-4

Keywords

Navigation