Advertisement

CpG Islands pp 49-80 | Cite as

CpG Islands in Cancer: Heads, Tails, and Sides

  • Humberto J. Ferreira
  • Manel Esteller
Part of the Methods in Molecular Biology book series (MIMB, volume 1766)

Abstract

DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.

Key words

CpG islands DNA methylation Cancer 

References

  1. 1.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159PubMedCrossRefGoogle Scholar
  2. 2.
    Arney KL, Fisher AG (2004) Epigenetic aspects of differentiation. J Cell Sci 117(Pt 19):4355–4363PubMedCrossRefGoogle Scholar
  3. 3.
    Elango N, Yi SV (2008) DNA methylation and structural and functional bimodality of vertebrate promoters. Mol Biol Evol 25(8):1602–1608PubMedCrossRefGoogle Scholar
  4. 4.
    Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8(4):416–424PubMedCrossRefGoogle Scholar
  5. 5.
    Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16(9):990–995PubMedCrossRefGoogle Scholar
  6. 6.
    Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19(8):1419–1428PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lee YC (2015) The role of piRNA-mediated epigenetic silencing in the population dynamics of transposable elements in Drosophila melanogaster. PLoS Genet 11(6):e1005269PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lyon MF (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14:135–148PubMedCentralPubMedGoogle Scholar
  9. 9.
    Wutz A (2011) Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12(8):542–553PubMedCrossRefGoogle Scholar
  10. 10.
    Reik W, Collick A, Norris ML, Barton SC, Surani MA (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328(6127):248–251PubMedCrossRefGoogle Scholar
  11. 11.
    Collick A, Reik W, Barton SC, Surani AH (1988) CpG methylation of an X-linked transgene is determined by somatic events postfertilization and not germline imprinting. Development 104(2):235–244PubMedGoogle Scholar
  12. 12.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMedCrossRefGoogle Scholar
  13. 13.
    Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321(6067):209–213PubMedCrossRefGoogle Scholar
  14. 14.
    Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, Frieman MB, Feinberg AP (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res 12(4):543–554PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lovkvist C, Dodd IB, Sneppen K, Haerter JO (2016) DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res 44(11):5125–5132CrossRefGoogle Scholar
  16. 16.
    Illingworth RS, Bird AP (2009) CpG islands—a rough guide. FEBS Lett 583(11):1713–1720PubMedCrossRefGoogle Scholar
  17. 17.
    Wu H, Caffo B, Jaffee HA, Irizarry RA, Feinberg AP (2010) Redefining CpG islands using hidden Markov models. Biostatistics 11(3):499–514PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103(5):1412–1417PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ioshikhes IP, Zhang MQ (2000) Large-scale human promoter mapping using CpG islands. Nat Genet 26(1):61–63PubMedCrossRefGoogle Scholar
  20. 20.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291(5507):1304–1351PubMedCrossRefGoogle Scholar
  21. 21.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LDW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J-F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois JA, Yang H, Yu J, Wang J, Huang G, Jun G, Hood L, Lee R, Madan A, Qin S, Davis RW, Federspiel NA, Pia Abola A, Proctor MJ, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Richard R, Richard McCombie W, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Richa A, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen H-C, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JGR, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Steven Johnson L, Jones TA, Kasif S, Kaspryzk A, Kennedy S, James Kent W, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AFA, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh R-F, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Patrinos A, Morgan MJ (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRefGoogle Scholar
  22. 22.
    Vavouri T, Lehner B (2012) Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biol 13(11):R110PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Riggs AD (1975) X Inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14(1):9–25PubMedCrossRefGoogle Scholar
  24. 24.
    Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187(4173):226–232PubMedCrossRefGoogle Scholar
  25. 25.
    Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N, Song F, Ghosh S, Held WA, Yoshida-Noro C, Nagase H (2007) Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics 89(3):326–337PubMedCrossRefGoogle Scholar
  26. 26.
    Lee HS, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci U S A 98(12):6753–6758PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Suzuki H, Maruyama R, Yamamoto E, Kai M (2012) DNA methylation and microRNA dysregulation in cancer. Mol Oncol 6(6):567–578PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kanwal R, Gupta S (2012) Epigenetic modifications in cancer. Clin Genet 81(4):303–311PubMedCrossRefGoogle Scholar
  29. 29.
    Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY, Lee HS, Kim NK, Kim SJ (1999) Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer. Oncogene 18(51):7280–7286PubMedCrossRefGoogle Scholar
  30. 30.
    Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–11PubMedCrossRefGoogle Scholar
  31. 31.
    Rodriguez C, Borgel J, Court F, Cathala G, Forne T, Piette J (2010) CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem Biophys Res Commun 392(2):129–134PubMedCrossRefGoogle Scholar
  32. 32.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068PubMedCrossRefGoogle Scholar
  33. 33.
    Omura N, Mizuma M, MacGregor A, Hong SM, Ayars M, Almario JA, Borges M, Kanda M, Li A, Vincent A, Maitra A, Goggins M (2016) Overexpression of ankyrin1 promotes pancreatic cancer cell growth. Oncotarget 7(23):34977–34987PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    McCarty G, Loeb DM (2015) Hypoxia-sensitive epigenetic regulation of an antisense-oriented lncRNA controls WT1 expression in myeloid leukemia cells. PLoS One 10(3):e0119837PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ferreira HJ, Heyn H, Moutinho C, Esteller M (2012) CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biol 9(6):881–890PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lev Maor G, Yearim A, Ast G (2015) The alternative role of DNA methylation in splicing regulation. Trends Genet 31(5):274–280PubMedCrossRefGoogle Scholar
  37. 37.
    Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A, Yurovsky A, Bryois J, Padioleau I, Romano L, Planchon A, Falconnet E, Bielser D, Gagnebin M, Giger T, Borel C, Letourneau A, Makrythanasis P, Guipponi M, Gehrig C, Antonarakis SE, Dermitzakis ET (2015) Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet 11(1):e1004958PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, Bird A (2011) Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res 21(7):1074–1086PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Vizoso M, Ferreira HJ, Lopez-Serra P, Carmona FJ, Martinez-Cardus A, Girotti MR, Villanueva A, Guil S, Moutinho C, Liz J, Portela A, Heyn H, Moran S, Vidal A, Martinez-Iniesta M, Manzano JL, Fernandez-Figueras MT, Elez E, Munoz-Couselo E, Botella-Estrada R, Berrocal A, Ponten F, Oord J, Gallagher WM, Frederick DT, Flaherty KT, McDermott U, Lorigan P, Marais R, Esteller M (2015) Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR. Nat Med 21(7):741–750PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wade PA (2001) Methyl CpG-binding proteins and transcriptional repression. BioEssays 23(12):1131–1137PubMedCrossRefGoogle Scholar
  41. 41.
    Perez A, Castellazzi CL, Battistini F, Collinet K, Flores O, Deniz O, Ruiz ML, Torrents D, Eritja R, Soler-Lopez M, Orozco M (2012) Impact of methylation on the physical properties of DNA. Biophys J 102(9):2140–2148PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Gama-Sosa MA, Midgett RM, Slagel VA, Githens S, Kuo KC, Gehrke CW, Ehrlich M (1983) Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta 740(2):212–219PubMedCrossRefGoogle Scholar
  43. 43.
    Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102(9):3336–3341PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bae MG, Kim JY, Choi JK (2016) Frequent hypermethylation of orphan CpG islands with enhancer activity in cancer. BMC Med Genomics 9(Suppl 1):38PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MS, Kawaji H, Lassmann T, Harbers M, Forrest AR, Bajic VB (2014) Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 15:119PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Mockenhaupt S, Makeyev EV (2015) Non-coding functions of alternative pre-mRNA splicing in development. Semin Cell Dev Biol 47-48:32–39PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136(4):777–793PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Listerman I, Sapra AK, Neugebauer KM (2006) Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13(9):815–822PubMedCrossRefGoogle Scholar
  52. 52.
    Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in alternative pre-mRNA splicing. Cell 144(1):16–26PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Monahan K, Rudnick ND, Kehayova PD, Pauli F, Newberry KM, Myers RM, Maniatis T (2012) Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-alpha gene expression. Proc Natl Acad Sci U S A 109(23):9125–9130PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Guo Y, Monahan K, Wu H, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q (2012) CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc Natl Acad Sci U S A 109(51):21081–21086PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476PubMedCrossRefGoogle Scholar
  57. 57.
    Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ding XL, Yang X, Liang G, Wang K (2016) Isoform switching and exon skipping induced by the DNA methylation inhibitor 5-Aza-2′-deoxycytidine. Sci Rep 6:24545PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Marina RJ, Sturgill D, Bailly MA, Thenoz M, Varma G, Prigge MF, Nanan KK, Shukla S, Haque N, Oberdoerffer S (2016) TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. EMBO J 35(3):335–355PubMedCrossRefGoogle Scholar
  60. 60.
    Yearim A, Gelfman S, Shayevitch R, Melcer S, Glaich O, Mallm JP, Nissim-Rafinia M, Cohen AH, Rippe K, Meshorer E, Ast G (2015) HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep 10(7):1122–1134PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang Z, Wang J, Schultz N, Zhang F, Parhad SS, Tu S, Vreven T, Zamore PD, Weng Z, Theurkauf WE (2014) The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157(6):1353–1363PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Agirre E, Bellora N, Allo M, Pages A, Bertucci P, Kornblihtt AR, Eyras E (2015) A chromatin code for alternative splicing involving a putative association between CTCF and HP1alpha proteins. BMC Biol 13:31PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479(7371):74–79PubMedCrossRefGoogle Scholar
  64. 64.
    Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 102(49):17551–17558PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20(2):116–117PubMedCrossRefGoogle Scholar
  66. 66.
    Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22(2):480–491PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285PubMedCrossRefGoogle Scholar
  68. 68.
    Xie M, Hong C, Zhang B, Lowdon RF, Xing X, Li D, Zhou X, Lee HJ, Maire CL, Ligon KL, Gascard P, Sigaroudinia M, Tlsty TD, Kadlecek T, Weiss A, O'Geen H, Farnham PJ, Madden PA, Mungall AJ, Tam A, Kamoh B, Cho S, Moore R, Hirst M, Marra MA, Costello JF, Wang T (2013) DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45(7):836–841PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Reik W, Lewis A (2005) Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6(5):403–410PubMedCrossRefGoogle Scholar
  70. 70.
    Paulsen M, Ferguson-Smith AC (2001) DNA methylation in genomic imprinting, development, and disease. J Pathol 195(1):97–110PubMedCrossRefGoogle Scholar
  71. 71.
    Kacem S, Feil R (2009) Chromatin mechanisms in genomic imprinting. Mamm Genome 20(9-10):544–556PubMedCrossRefGoogle Scholar
  72. 72.
    Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, Schramm K, Wolf P, Kunze S, Baran Y, Guarrera S, Vineis P, Krogh V, Panico S, Tumino R, Kretschmer A, Gieger C, Peters A, Prokisch H, Relton CL, Matullo G, Illig T, Waldenberger M, Halperin E (2015) Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin 8:43PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365PubMedCrossRefGoogle Scholar
  74. 74.
    Du M, Zhou W, Beatty LG, Weksberg R, Sadowski PD (2004) The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5. Genomics 84(2):288–300PubMedCrossRefGoogle Scholar
  75. 75.
    Mohammad F, Pandey GK, Mondal T, Enroth S, Redrup L, Gyllensten U, Kanduri C (2012) Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139(15):2792–2803PubMedCrossRefGoogle Scholar
  76. 76.
    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Cotton AM, Lam L, Affleck JG, Wilson IM, Penaherrera MS, McFadden DE, Kobor MS, Lam WL, Robinson WP, Brown CJ (2011) Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130(2):187–201PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Murakami K, Ohhira T, Oshiro E, Qi D, Oshimura M, Kugoh H (2009) Identification of the chromatin regions coated by non-coding Xist RNA. Cytogenet Genome Res 125(1):19–25PubMedCrossRefGoogle Scholar
  79. 79.
    Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304):38–44PubMedCrossRefGoogle Scholar
  80. 80.
    Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153(4):773–784PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Navarro P, Page DR, Avner P, Rougeulle C (2006) Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev 20(20):2787–2792PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Chureau C, Chantalat S, Romito A, Galvani A, Duret L, Avner P, Rougeulle C (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20(4):705–718PubMedCrossRefGoogle Scholar
  83. 83.
    Barr H, Hermann A, Berger J, Tsai HH, Adie K, Prokhortchouk A, Hendrich B, Bird A (2007) Mbd2 contributes to DNA methylation-directed repression of the Xist gene. Mol Cell Biol 27(10):3750–3757PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Jin B, Ernst J, Tiedemann RL, Xu H, Sureshchandra S, Kellis M, Dalton S, Liu C, Choi JH, Robertson KD (2012) Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells. Cell Rep 2(5):1411–1424PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257PubMedCrossRefGoogle Scholar
  86. 86.
    El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE (2008) G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem 283(47):32198–32208PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Song J, Teplova M, Ishibe-Murakami S, Patel DJ (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335(6069):709–712PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, Veeranan-Karmegam R, Arjunan P, Gnana-Prakasam JP, Sadanand F, Pei L, Chang CS, Choi JH, Shi H, Manicassamy S, Prasad PD, Sharma S, Ganapathy V, Jothi R, Thangaraju M (2015) DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 6:6910PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926PubMedCrossRefGoogle Scholar
  90. 90.
    Song CX, He C (2013) Potential functional roles of DNA demethylation intermediates. Trends Biochem Sci 38(10):480–484PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Guibert S, Weber M (2013) Functions of DNA methylation and hydroxymethylation in mammalian development. Curr Top Dev Biol 104:47–83PubMedCrossRefGoogle Scholar
  92. 92.
    Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14(6):341–356PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Williams K, Christensen J, Helin K (2011) DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep 13(1):28–35PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10,11)(q22;q23). Leukemia 17(3):637–641PubMedCrossRefGoogle Scholar
  95. 95.
    Tefferi A, Levine RL, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Finke CM, Mullally A, Li CY, Pardanani A, Gilliland DG (2009) Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia 23(5):900–904PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, Malinge S, Yao J, Kilpivaara O, Bhat R, Huberman K, Thomas S, Dolgalev I, Heguy A, Paietta E, Le Beau MM, Beran M, Tallman MS, Ebert BL, Kantarjian HM, Stone RM, Gilliland DG, Crispino JD, Levine RL (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114(1):144–147PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Walter J (2011) An epigenetic Tet a Tet with pluripotency. Cell Stem Cell 8(2):121–122PubMedCrossRefGoogle Scholar
  99. 99.
    Wang T, Pan Q, Lin L, Szulwach KE, Song CX, He C, Wu H, Warren ST, Jin P, Duan R, Li X (2012) Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum. Hum Mol Genet 21(26):5500–5510PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A, Kurz K, Carell T, Angius A, Latronico MV, Papait R, Condorelli G (2016) DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun 7:12418PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Qin S, Li Q, Zhou J, Liu ZJ, Su N, Wilson J, Lu ZM, Deng D (2014) Homeostatic maintenance of allele-specific p16 methylation in cancer cells accompanied by dynamic focal methylation and hydroxymethylation. PLoS One 9(5):e97785PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Tampe B, Tampe D, Muller CA, Sugimoto H, LeBleu V, Xu X, Muller GA, Zeisberg EM, Kalluri R, Zeisberg M (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 25(5):905–912PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, Sossalla S, Kalluri R, Zeisberg M, Hasenfuss G, Zeisberg EM (2015) Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res 105(3):279–291PubMedCrossRefGoogle Scholar
  104. 104.
    Tammen SA, Park LK, Dolnikowski GG, Ausman LM, Friso S, Choi SW (2015) Hepatic DNA hydroxymethylation is site-specifically altered by chronic alcohol consumption and aging. Eur J Nutr 56(2):535–544PubMedCrossRefGoogle Scholar
  105. 105.
    Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19(6):959–966PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17(2):215–222PubMedCrossRefGoogle Scholar
  108. 108.
    Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228(4696):187–190PubMedCrossRefGoogle Scholar
  109. 109.
    Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43(8):768–775PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Issa JP (2011) Epigenetic variation and cellular Darwinism. Nat Genet 43(8):724–726PubMedCrossRefGoogle Scholar
  111. 111.
    Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36PubMedCrossRefGoogle Scholar
  112. 112.
    Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13(10):679–692PubMedCrossRefGoogle Scholar
  113. 113.
    Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, Egger G, Gal-Yam EN, Jones PA (2007) Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12(5):432–444PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Taberlay PC, Statham AL, Kelly TK, Clark SJ, Jones PA (2014) Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Res 24(9):1421–1432PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947PubMedCrossRefGoogle Scholar
  116. 116.
    Heyn H, Vidal E, Ferreira HJ, Vizoso M, Sayols S, Gomez A, Moran S, Boque-Sastre R, Guil S, Martinez-Cardus A, Lin CY, Royo R, Sanchez-Mut JV, Martinez R, Gut M, Torrents D, Orozco M, Gut I, Young RA, Esteller M (2016) Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol 17(1):11PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Rideout WM III, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249(4974):1288–1290PubMedCrossRefGoogle Scholar
  118. 118.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92PubMedCrossRefGoogle Scholar
  119. 119.
    Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455PubMedCrossRefGoogle Scholar
  120. 120.
    Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492PubMedCrossRefGoogle Scholar
  121. 121.
    Kaneda A, Tsukamoto T, Takamura-Enya T, Watanabe N, Kaminishi M, Sugimura T, Tatematsu M, Ushijima T (2004) Frequent hypomethylation in multiple promoter CpG islands is associated with global hypomethylation, but not with frequent promoter hypermethylation. Cancer Sci 95(1):58–64PubMedCrossRefGoogle Scholar
  122. 122.
    Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRefGoogle Scholar
  123. 123.
    Badal V, Chuang LS, Tan EH, Badal S, Villa LL, Wheeler CM, Li BF, Bernard HU (2003) CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 77(11):6227–6234PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Hur K, Cejas P, Feliu J, Moreno-Rubio J, Burgos E, Boland CR, Goel A (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63(4):635–646PubMedCrossRefGoogle Scholar
  125. 125.
    Collier LS, Largaespada DA (2007) Transposable elements and the dynamic somatic genome. Genome Biol 8(Suppl 1):S5PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Chenais B (2015) Transposable elements in cancer and other human diseases. Curr Cancer Drug Targets 15(3):227–242PubMedCrossRefGoogle Scholar
  127. 127.
    Bourc'his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431(7004):96–99PubMedCrossRefGoogle Scholar
  128. 128.
    Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ III, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park PJ (2012) Landscape of somatic retrotransposition in human cancers. Science 337(6097):967–971PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Carreira PE, Richardson SR, Faulkner GJ (2014) L1 retrotransposons, cancer stem cells and oncogenesis. FEBS J 281(1):63–73PubMedCrossRefGoogle Scholar
  130. 130.
    Helman E, Lawrence MS, Stewart C, Sougnez C, Getz G, Meyerson M (2014) Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res 24(7):1053–1063PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Hattori M, Sakamoto H, Satoh K, Yamamoto T (2001) DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett 169(2):155–164PubMedCrossRefGoogle Scholar
  132. 132.
    Nabilsi NH, Broaddus RR, Loose DS (2009) DNA methylation inhibits p53-mediated survivin repression. Oncogene 28(19):2046–2050PubMedCrossRefGoogle Scholar
  133. 133.
    de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, Malekpour F, Volinia S, Croce CM, Najmabadi H, Diederichs S, Sahin O, Mayer D, Lyko F, Hoheisel JD, Riazalhosseini Y (2010) Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res 70(22):9175–9184PubMedCrossRefGoogle Scholar
  134. 134.
    Kang JY, Song SH, Yun J, Jeon MS, Kim HP, Han SW, Kim TY (2015) Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression. Oncogene 34(45):5677–5684PubMedCrossRefGoogle Scholar
  135. 135.
    Nakayama M, Wada M, Harada T, Nagayama J, Kusaba H, Ohshima K, Kozuru M, Komatsu H, Ueda R, Kuwano M (1998) Hypomethylation status of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias. Blood 92(11):4296–4307PubMedGoogle Scholar
  136. 136.
    Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC (1993) bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82(6):1820–1828PubMedGoogle Scholar
  137. 137.
    Naushad SM, Prayaga A, Digumarti RR, Gottumukkala SR, Kutala VK (2012) Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) expression is epigenetically regulated by one-carbon metabolism in invasive duct cell carcinoma of breast. Mol Cell Biochem 361(1-2):189–195PubMedCrossRefGoogle Scholar
  138. 138.
    Divyya S, Naushad SM, Murthy PV, Reddy Ch R, Kutala VK (2013) GCPII modulates oxidative stress and prostate cancer susceptibility through changes in methylation of RASSF1, BNIP3, GSTP1 and Ec-SOD. Mol Biol Rep 40(10):5541–5550PubMedCrossRefGoogle Scholar
  139. 139.
    Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, Huang RL, Lai HC, Lin H, Liu Y, Miller D, Rhee JK, Huang YW, Gu F, Gray JW, Huang TM, Nephew KP (2013) CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene 32(38):4519–4528PubMedCrossRefGoogle Scholar
  140. 140.
    Gomez A, Karlgren M, Edler D, Bernal ML, Mkrtchian S, Ingelman-Sundberg M (2007) Expression of CYP2W1 in colon tumors: regulation by gene methylation. Pharmacogenomics 8(10):1315–1325PubMedCrossRefGoogle Scholar
  141. 141.
    Rajendran G, Shanmuganandam K, Bendre A, Muzumdar D, Goel A, Shiras A (2011) Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neuro-Oncol 104(2):483–494CrossRefGoogle Scholar
  142. 142.
    Naghitorabi M, Mohammadi Asl J, Mir Mohammad Sadeghi H, Rabbani M, Jafarian-Dehkordi A, Javanmard HS (2013) Quantitative evaluation of DNMT3B promoter methylation in breast cancer patients using differential high resolution melting analysis. Res Pharm Sci 8(3):167–175PubMedCentralPubMedGoogle Scholar
  143. 143.
    Lee HG, Kim H, Son T, Jeong Y, Kim SU, Dong SM, Park YN, Lee JD, Lee JM, Park JH (2016) Regulation of HK2 expression through alterations in CpG methylation of the HK2 promoter during progression of hepatocellular carcinoma. Oncotarget 7(27):41798–41810PubMedCentralPubMedGoogle Scholar
  144. 144.
    Lee PS, Teaberry VS, Bland AE, Huang Z, Whitaker RS, Baba T, Fujii S, Secord AA, Berchuck A, Murphy SK (2010) Elevated MAL expression is accompanied by promoter hypomethylation and platinum resistance in epithelial ovarian cancer. Int J Cancer 126(6):1378–1389PubMedGoogle Scholar
  145. 145.
    He Y, Cui Y, Wang W, Gu J, Guo S, Ma K, Luo X (2011) Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia 13(9):841–853PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G, Mantovani V, Marinello J, Sabbioni S, Callegari E, Cescon M, Ravaioli M, Croce CM, Bolondi L, Gramantieri L (2012) In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 227(3):275–285PubMedCrossRefGoogle Scholar
  147. 147.
    Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423PubMedCrossRefGoogle Scholar
  148. 148.
    Zrihan-Licht S, Weiss M, Keydar I, Wreschner DH (1995) DNA methylation status of the MUC1 gene coding for a breast-cancer-associated protein. Int J Cancer 62(3):245–251PubMedCrossRefGoogle Scholar
  149. 149.
    Ye L, Li X, Kong X, Wang W, Bi Y, Hu L, Cui B, Li X, Ning G (2005) Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J Endocrinol 185(2):337–343PubMedCrossRefGoogle Scholar
  150. 150.
    Yoshida M, Nosaka K, Yasunaga J, Nishikata I, Morishita K, Matsuoka M (2004) Aberrant expression of the MEL1S gene identified in association with hypomethylation in adult T-cell leukemia cells. Blood 103(7):2753–2760PubMedCrossRefGoogle Scholar
  151. 151.
    Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E, Kohsaka S, Tanino M, Nishihara H, Tanaka S (2008) Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 18(10):1037–1046PubMedCrossRefGoogle Scholar
  152. 152.
    Gopisetty G, Xu J, Sampath D, Colman H, Puduvalli VK (2013) Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation. Oncogene 32(26):3119–3129PubMedCrossRefGoogle Scholar
  153. 153.
    Yamada N, Noguchi S, Kumazaki M, Shinohara H, Miki K, Naoe T, Akao Y (2014) Epigenetic regulation of microRNA-128a expression contributes to the apoptosis-resistance of human T-cell leukaemia jurkat cells by modulating expression of fas-associated protein with death domain (FADD). Biochim Biophys Acta 1843(3):590–602PubMedCrossRefGoogle Scholar
  154. 154.
    Jun HJ, Woolfenden S, Coven S, Lane K, Bronson R, Housman D, Charest A (2009) Epigenetic regulation of c-ROS receptor tyrosine kinase expression in malignant gliomas. Cancer Res 69(6):2180–2184PubMedCrossRefGoogle Scholar
  155. 155.
    Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K, Sakamoto H, Yoshida T, Sasaki H (2005) Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 65(6):2115–2124PubMedCrossRefGoogle Scholar
  156. 156.
    Fu X, Deng H, Zhao L, Li J, Zhou Y, Zhang Y (2010) Distinct expression patterns of hedgehog ligands between cultured and primary colorectal cancers are associated with aberrant methylation of their promoters. Mol Cell Biochem 337(1-2):185–192PubMedCrossRefGoogle Scholar
  157. 157.
    Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63(3):664–673PubMedGoogle Scholar
  158. 158.
    Czekierdowski A, Czekierdowska S, Wielgos M, Smolen A, Kaminski P, Kotarski J (2006) The role of CpG islands hypomethylation and abnormal expression of neuronal protein synuclein-gamma (SNCG) in ovarian cancer. Neuro Endocrinol Lett 27(3):381–386PubMedGoogle Scholar
  159. 159.
    Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, Urquiza L, Jauregi P, Lopez de Munain A, Sampron N, Aramburu A, Tejada-Solis S, Vicente C, Odero MD, Bandres E, Garcia-Foncillas J, Idoate MA, Lang FF, Fueyo J, Gomez-Manzano C (2011) Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6(11):e26740PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Hatano K, Miyamoto Y, Mori M, Nimura K, Nakai Y, Nonomura N, Kaneda Y (2012) Androgen-regulated transcriptional control of sialyltransferases in prostate cancer cells. PLoS One 7(2):e31234PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Wang Q, Williamson M, Bott S, Brookman-Amissah N, Freeman A, Nariculam J, Hubank MJ, Ahmed A, Masters JR (2007) Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer. Oncogene 26(45):6560–6565PubMedCrossRefGoogle Scholar
  162. 162.
    Bhusari S, Yang B, Kueck J, Huang W, Jarrard DF (2011) Insulin-like growth factor-2 (IGF2) loss of imprinting marks a field defect within human prostates containing cancer. Prostate 71(15):1621–1630PubMedCrossRefGoogle Scholar
  163. 163.
    Baba Y, Nosho K, Shima K, Huttenhower C, Tanaka N, Hazra A, Giovannucci EL, Fuchs CS, Ogino S (2010) Hypomethylation of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastroenterology 139(6):1855–1864PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362(6422):749–751PubMedCrossRefGoogle Scholar
  165. 165.
    Shetty PJ, Movva S, Pasupuleti N, Vedicherlla B, Vattam KK, Venkatasubramanian S, Ahuja YR, Hasan Q (2011) Regulation of IGF2 transcript and protein expression by altered methylation in breast cancer. J Cancer Res Clin Oncol 137(2):339–345PubMedCrossRefGoogle Scholar
  166. 166.
    Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U (2014) Deregulation of RB1 expression by loss of imprinting in human hepatocellular carcinoma. J Pathol 233(4):392–401PubMedCrossRefGoogle Scholar
  167. 167.
    Jarrard DF, Kinoshita H, Shi Y, Sandefur C, Hoff D, Meisner LF, Chang C, Herman JG, Isaacs WB, Nassif N (1998) Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res 58(23):5310–5314PubMedGoogle Scholar
  168. 168.
    Tamada H, Kitazawa R, Gohji K, Kitazawa S (2001) Epigenetic regulation of human bone morphogenetic protein 6 gene expression in prostate cancer. J Bone Miner Res 16(3):487–496PubMedCrossRefGoogle Scholar
  169. 169.
    Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(7):564–569PubMedCrossRefGoogle Scholar
  170. 170.
    Chen K, Wang G, Peng L, Liu S, Fu X, Zhou Y, Yu H, Li A, Li J, Zhang S, Bai Y, Zhang Y (2011) CADM1/TSLC1 inactivation by promoter hypermethylation is a frequent event in colorectal carcinogenesis and correlates with late stages of the disease. Int J Cancer 128(2):266–273PubMedCrossRefGoogle Scholar
  171. 171.
    Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55(22):5195–5199PubMedGoogle Scholar
  172. 172.
    Carmona FJ, Villanueva A, Vidal A, Munoz C, Puertas S, Penin RM, Goma M, Lujambio A, Piulats JM, Mesia R, Sanchez-Cespedes M, Manos M, Condom E, Eccles SA, Esteller M (2012) Epigenetic disruption of cadherin-11 in human cancer metastasis. J Pathol 228(2):230–240PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Lin YL, Gui SL, Ma JG (2015) Aberrant methylation of CDH11 predicts a poor outcome for patients with bladder cancer. Oncol Lett 10(2):647–652PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Mino A, Onoda N, Yashiro M, Aya M, Fujiwara I, Kubo N, Sawada T, Ohira M, Kato Y, Hirakawa K (2006) Frequent p16 CpG island hypermethylation in primary remnant gastric cancer suggesting an independent carcinogenic pathway. Oncol Rep 15(3):615–620PubMedGoogle Scholar
  175. 175.
    Zhang YJ, Ahsan H, Chen Y, Lunn RM, Wang LY, Chen SY, Lee PH, Chen CJ, Santella RM (2002) High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma. Mol Carcinog 35(2):85–92PubMedCrossRefGoogle Scholar
  176. 176.
    Wang J, Sasco AJ, Fu C, Xue H, Guo G, Hua Z, Zhou Q, Jiang Q, Xu B (2008) Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFR C677T genetic polymorphism in esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev 17(1):118–125CrossRefGoogle Scholar
  177. 177.
    Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, Hackanson B, Grever MR, Lucas DM, Matkovic JJ, Lin TS, Kipps TJ, Murray F, Weisenburger D, Sanger W, Lynch J, Watson P, Jansen M, Yoshinaga Y, Rosenquist R, de Jong PJ, Coggill P, Beck S, Lynch H, de la Chapelle A, Plass C (2007) Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129(5):879–890PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Tada Y, Wada M, Taguchi K, Mochida Y, Kinugawa N, Tsuneyoshi M, Naito S, Kuwano M (2002) The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res 62(14):4048–4053PubMedGoogle Scholar
  179. 179.
    Rosas SL, Koch W, da Costa Carvalho MG, Wu L, Califano J, Westra W, Jen J, Sidransky D (2001) Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 61(3):939–942PubMedGoogle Scholar
  180. 180.
    Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, Hofmann WK, Baldus CD (2009) Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res 33(6):817–822PubMedCrossRefGoogle Scholar
  181. 181.
    Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59(4):793–797PubMedGoogle Scholar
  182. 182.
    Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS, Huang TH (2009) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 69(23):9038–9046PubMedCentralPubMedCrossRefGoogle Scholar
  183. 183.
    Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Agro E, Levine AJ, Melino G, Bernardini S, Candi E (2013) DNA methylation silences miR-132 in prostate cancer. Oncogene 32(1):127–134PubMedCrossRefGoogle Scholar
  184. 184.
    Li Y, Xu Z, Li B, Zhang Z, Luo H, Wang Y, Lu Z, Wu X (2014) Epigenetic silencing of miRNA-9 is correlated with promoter-proximal CpG island hypermethylation in gastric cancer in vitro and in vivo. Int J Oncol 45(6):2576–2586PubMedCrossRefGoogle Scholar
  185. 185.
    Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95(12):6870–6875PubMedCentralPubMedCrossRefGoogle Scholar
  186. 186.
    Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG (1998) MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 17(18):2413–2417PubMedCrossRefGoogle Scholar
  187. 187.
    Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC (1999) hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res 59(1):159–164PubMedGoogle Scholar
  188. 188.
    Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung NK, Rahman N, Esteller M (2009) Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci U S A 106(51):21830–21835PubMedCentralPubMedCrossRefGoogle Scholar
  189. 189.
    Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25(3):315–319PubMedCrossRefGoogle Scholar
  190. 190.
    Irimia M, Fraga MF, Sanchez-Cespedes M, Esteller M (2004) CpG island promoter hypermethylation of the Ras-effector gene NORE1A occurs in the context of a wild-type K-ras in lung cancer. Oncogene 23(53):8695–8699PubMedCrossRefGoogle Scholar
  191. 191.
    Guo W, Wang C, Guo Y, Shen S, Guo X, Kuang G, Dong Z (2015) RASSF5A, a candidate tumor suppressor, is epigenetically inactivated in esophageal squamous cell carcinoma. Clin Exp Metastasis 32(1):83–98PubMedCrossRefGoogle Scholar
  192. 192.
    Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48(5):880–888PubMedCentralPubMedGoogle Scholar
  193. 193.
    Wasserkort R, Kalmar A, Valcz G, Spisak S, Krispin M, Toth K, Tulassay Z, Sledziewski AZ, Molnar B (2013) Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer 13:398PubMedCentralPubMedCrossRefGoogle Scholar
  194. 194.
    Qi J, Zhu YQ, Luo J, Tao WH (2006) Hypermethylation and expression regulation of secreted frizzled-related protein genes in colorectal tumor. World J Gastroenterol 12(44):7113–7117PubMedCentralPubMedCrossRefGoogle Scholar
  195. 195.
    Nogales V, Reinhold WC, Varma S, Martinez-Cardus A, Moutinho C, Moran S, Heyn H, Sebio A, Barnadas A, Pommier Y, Esteller M (2016) Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 7(3):3084–3097PubMedCrossRefGoogle Scholar
  196. 196.
    Takada H, Wakabayashi N, Dohi O, Yasui K, Sakakura C, Mitsufuji S, Taniwaki M, Yoshikawa T (2010) Tissue factor pathway inhibitor 2 (TFPI2) is frequently silenced by aberrant promoter hypermethylation in gastric cancer. Cancer Genet Cytogenet 197(1):16–24PubMedCrossRefGoogle Scholar
  197. 197.
    Guan Z, Zhang J, Song S, Dai D (2013) Promoter methylation and expression of TIMP3 gene in gastric cancer. Diagn Pathol 8:110PubMedCentralPubMedGoogle Scholar
  198. 198.
    Catasus L, Pons C, Munoz J, Espinosa I, Prat J (2013) Promoter hypermethylation contributes to TIMP3 down-regulation in high stage endometrioid endometrial carcinomas. Histopathology 62(4):632–641PubMedCrossRefGoogle Scholar
  199. 199.
    Wajed SA, Laird PW, DeMeester TR (2001) DNA methylation: an alternative pathway to cancer. Ann Surg 234(1):10–20PubMedCentralPubMedCrossRefGoogle Scholar
  200. 200.
    Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16(Spec 1):R50–R59PubMedCrossRefGoogle Scholar
  201. 201.
    Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16(4):168–174PubMedCrossRefGoogle Scholar
  202. 202.
    Murphree AL, Benedict WF (1984) Retinoblastoma: clues to human oncogenesis. Science 223(4640):1028–1033PubMedCrossRefGoogle Scholar
  203. 203.
    Zhao Y, Sun J, Zhang H, Guo S, Gu J, Wang W, Tang N, Zhou X, Yu J (2014) High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq. Clin Epigenetics 6(1):18PubMedCentralPubMedCrossRefGoogle Scholar
  204. 204.
    Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M, Hamdy FC, Catto JW (2011) Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 17(6):1287–1296PubMedCrossRefGoogle Scholar
  205. 205.
    Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19(1):24–32PubMedCentralPubMedCrossRefGoogle Scholar
  206. 206.
    Mukhopadhyay R, Yu W, Whitehead J, Xu J, Lezcano M, Pack S, Kanduri C, Kanduri M, Ginjala V, Vostrov A, Quitschke W, Chernukhin I, Klenova E, Lobanenkov V, Ohlsson R (2004) The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide. Genome Res 14(8):1594–1602PubMedCentralPubMedCrossRefGoogle Scholar
  207. 207.
    Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F, Lee K, Canfield T, Weaver M, Sandstrom R, Thurman RE, Kaul R, Myers RM, Stamatoyannopoulos JA (2012) Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 22(9):1680–1688PubMedCentralPubMedCrossRefGoogle Scholar
  208. 208.
    Yan H, Tang G, Wang H, Hao L, He T, Sun X, Ting AH, Deng A, Sun S (2016) DNA methylation reactivates GAD1 expression in cancer by preventing CTCF-mediated polycomb repressive complex 2 recruitment. Oncogene 35(30):3995–4008PubMedCrossRefGoogle Scholar
  209. 209.
    de Maat MF, van de Velde CJ, Umetani N, de Heer P, Putter H, van Hoesel AQ, Meijer GA, van Grieken NC, Kuppen PJ, Bilchik AJ, Tollenaar RA, Hoon DS (2007) Epigenetic silencing of cyclooxygenase-2 affects clinical outcome in gastric cancer. J Clin Oncol 25(31):4887–4894PubMedCrossRefGoogle Scholar
  210. 210.
    Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16(Spec 1):R28–R49PubMedCrossRefGoogle Scholar
  211. 211.
    Jones JS, Amos CI, Pande M, Gu X, Chen J, Campos IM, Wei Q, Rodriguez-Bigas M, Lynch PM, Frazier ML (2006) DNMT3b polymorphism and hereditary nonpolyposis colorectal cancer age of onset. Cancer Epidemiol Biomark Prev 15(5):886–891CrossRefGoogle Scholar
  212. 212.
    Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q (2002) A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res 62(17):4992–4995PubMedGoogle Scholar
  213. 213.
    Montgomery KG, Liu MC, Eccles DM, Campbell IG (2004) The DNMT3B C→T promoter polymorphism and risk of breast cancer in a British population: a case-control study. Breast Cancer Res 6(4):R390–R394PubMedCentralPubMedCrossRefGoogle Scholar
  214. 214.
    Singal R, Das PM, Manoharan M, Reis IM, Schlesselman JJ (2005) Polymorphisms in the DNA methyltransferase 3b gene and prostate cancer risk. Oncol Rep 14(2):569–573PubMedGoogle Scholar
  215. 215.
    Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557):1079–1082PubMedCrossRefGoogle Scholar
  216. 216.
    Coutinho DF, Monte-Mor BC, Vianna DT, Rouxinol ST, Batalha AB, Bueno AP, Boulhosa AM, Fernandez TS, Pombo-de-Oliveira MS, Gutiyama LM, Abdelhay E, Zalcberg IR (2015) TET2 expression level and 5-hydroxymethylcytosine are decreased in refractory cytopenia of childhood. Leuk Res 39(10):1103–1108PubMedCrossRefGoogle Scholar
  217. 217.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360(22):2289–2301PubMedCrossRefGoogle Scholar
  218. 218.
    Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, Stevens-Linders E, van Hoogen P, van Kessel AG, Raymakers RA, Kamping EJ, Verhoef GE, Verburgh E, Hagemeijer A, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41(7):838–842PubMedCrossRefGoogle Scholar
  219. 219.
    Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2(8):627–637PubMedCentralPubMedCrossRefGoogle Scholar
  220. 220.
    Murata A, Baba Y, Ishimoto T, Miyake K, Kosumi K, Harada K, Kurashige J, Iwagami S, Sakamoto Y, Miyamoto Y, Yoshida N, Yamamoto M, Oda S, Watanabe M, Nakao M, Baba H (2015) TET family proteins and 5-hydroxymethylcytosine in esophageal squamous cell carcinoma. Oncotarget 6(27):23372–23382PubMedCentralPubMedCrossRefGoogle Scholar
  221. 221.
    Udali S, Guarini P, Moruzzi S, Ruzzenente A, Tammen SA, Guglielmi A, Conci S, Pattini P, Olivieri O, Corrocher R, Choi SW, Friso S (2015) Global DNA methylation and hydroxymethylation differ in hepatocellular carcinoma and cholangiocarcinoma and relate to survival rate. Hepatology 62(2):496–504PubMedCrossRefGoogle Scholar
  222. 222.
    Thienpont B, Steinbacher J, Zhao H, D'Anna F, Kuchnio A, Ploumakis A, Ghesquiere B, Van Dyck L, Boeckx B, Schoonjans L, Hermans E, Amant F, Kristensen VN, Koh KP, Mazzone M, Coleman ML, Carell T, Carmeliet P, Lambrechts D (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537(7618):63–68PubMedCentralPubMedCrossRefGoogle Scholar
  223. 223.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006PubMedCentralPubMedCrossRefGoogle Scholar
  224. 224.
    Moran S, Martinez-Cardus A, Sayols S, Musulen E, Balana C, Estival-Gonzalez A, Moutinho C, Heyn H, Diaz-Lagares A, de Moura MC, Stella GM, Comoglio PM, Ruiz-Miro M, Matias-Guiu X, Pazo-Cid R, Anton A, Lopez-Lopez R, Soler G, Longo F, Guerra I, Fernandez S, Assenov Y, Plass C, Morales R, Carles J, Bowtell D, Mileshkin L, Sia D, Tothill R, Tabernero J, Llovet JM, Esteller M (2016) Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 17(10):1386–1395PubMedCrossRefGoogle Scholar
  225. 225.
    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354PubMedCrossRefGoogle Scholar
  226. 226.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003PubMedCrossRefGoogle Scholar
  227. 227.
    Amatu A, Sartore-Bianchi A, Moutinho C, Belotti A, Bencardino K, Chirico G, Cassingena A, Rusconi F, Esposito A, Nichelatti M, Esteller M, Siena S (2013) Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin Cancer Res 19(8):2265–2272PubMedCrossRefGoogle Scholar
  228. 228.
    Xu Y, Diao L, Chen Y, Liu Y, Wang C, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Deng D, Narod SA, Xie Y (2013) Promoter methylation of BRCA1 in triple-negative breast cancer predicts sensitivity to adjuvant chemotherapy. Ann Oncol 24(6):1498–1505PubMedCrossRefGoogle Scholar
  229. 229.
    Moutinho C, Martinez-Cardus A, Santos C, Navarro-Perez V, Martinez-Balibrea E, Musulen E, Carmona FJ, Sartore-Bianchi A, Cassingena A, Siena S, Elez E, Tabernero J, Salazar R, Abad A, Esteller M (2014) Epigenetic inactivation of the BRCA1 interactor SRBC and resistance to oxaliplatin in colorectal cancer. J Natl Cancer Inst 106(1):djt322PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cancer Epigenetics and Biology Program (PEBC)Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.Department of Physiological Sciences II, School of MedicineUniversity of BarcelonaBarcelonaSpain

Personalised recommendations