Skip to main content

An Application-Directed, Versatile DNA FISH Platform for Research and Diagnostics

  • Protocol
  • First Online:
CpG Islands

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1766))

Abstract

DNA fluorescence in situ hybridization (DNA FISH) has emerged as a powerful microscopy technique that allows a unique view into the composition and arrangement of the genetic material in its natural context—be it the cell nucleus in interphase, or chromosomes in metaphase spreads. The core principle of DNA FISH is the ability of fluorescently labeled DNA probes (either double- or single-stranded DNA fragments) to bind to their complementary sequences in situ in cells or tissues, revealing the location of their target as fluorescence signals detectable with a fluorescence microscope. Numerous variants and improvements of the original DNA FISH method as well as a vast repertoire of applications have been described since its inception more than 4 decades ago. In recent years, the development of many new fluorescent dyes together with drastic advancements in methods for probe generation (Boyle et al., Chromosome Res 19:901–909, 2011; Beliveau et al., Proc Natl Acad Sci U S A 109:21301–21306, 2012; Bienko et al., Nat Methods 10:122–124, 2012), as well as improvements in the resolution of microscopy technologies, have boosted the number of DNA FISH applications, particularly in the field of genome architecture (Markaki et al., Bioessays 34:412–426, 2012; Beliveau et al., Nat Commun 6:7147, 2015). However, despite these remarkable steps forward, choosing which type of DNA FISH sample preparation protocol, probe design, hybridization procedure, and detection method is best suited for a given application remains still challenging for many research labs, preventing a more widespread use of this powerful technology. Here, we present a comprehensive platform to help researchers choose which DNA FISH protocol is most suitable for their particular application. In addition, we describe computational pipelines that can be implemented for efficient DNA FISH probe design and for signal quantification. Our goal is to make DNA FISH a versatile and streamlined technique that can be easily implemented by both research and diagnostic labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 09 February 2019

    The original version of the chapter was inadvertently published with some errors and this has been corrected now:

References

  1. Bienko M, Crosetto N, Teytelman L, Klemm S, Itzkovitz S, van Oudenaarden A (2013) A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods 10:122–124

    Article  CAS  Google Scholar 

  2. Boyle S, Rodesch MJ, Halvensleben HA, Jeddeloh JA, Bickmore WA (2011) Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosom Res 19:901–909

    Article  CAS  Google Scholar 

  3. Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard J-M, Wu C-T (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 109:21301–21306

    Article  CAS  Google Scholar 

  4. Beliveau BJ, Boettiger AN, Avendaño MS, Jungmann R, McCole RB, Joyce EF, Kim-Kiselak C, Bantignies F, Fonseka CY, Erceg J, Hannan MA, Hoang HG, Colognori D, Lee JT, Shih WM, Yin P, Zhuang X, Wu C-T (2015) Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun 6:7147

    Article  CAS  Google Scholar 

  5. Dahl F, Banér J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M (2004) Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci U S A 101:4548–4553

    Article  CAS  Google Scholar 

  6. Schmidt TL, Beliveau BJ, Uca YO, Theilmann M, Da Cruz F, Wu C-T, Shih WM (2015) Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat Commun 6:8634

    Article  CAS  Google Scholar 

  7. Moffitt JR, Zhuang X (2016) RNA imaging with multiplexed error-robust fluorescence in situ hybridization (MERFISH). Methods Enzymol 572:1–49

    Article  CAS  Google Scholar 

  8. Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9:743–748

    Article  CAS  Google Scholar 

  9. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L (2014) Single-cell in situ RNA profiling by sequential hybridization. Nat Methods 11:360–361

    Article  CAS  Google Scholar 

  10. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090

    Article  Google Scholar 

  11. Wang S, Su J-H, Beliveau BJ, Bintu B, Moffitt JR, Wu C-T, Zhuang X (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598–602

    Article  CAS  Google Scholar 

  12. Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25:730–748

    Article  CAS  Google Scholar 

  13. Hausmann M, Winkler R, Hildenbrand G, Finsterle J, Weisel A, Rapp A, Schmitt E, Janz S, Cremer C (2003) COMBO-FISH: specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations. BioTechniques 35(564–70):572–577

    Google Scholar 

  14. Schmitt E, Schwarz-Finsterle J, Stein S, Boxler C, Müller P, Mokhir A, Krämer R, Cremer C, Hausmann M (2010) Combinatorial oligo FISH: directed labeling of specific genome domains in differentially fixed cell material and live cells. In: Bridger JM, Volpi EV (eds) Fluorescence in situ Hybridization (FISH). Humana, Louisville, KY, pp 185–202

    Chapter  Google Scholar 

  15. Müller P, Rößler J, Schwarz-Finsterle J, Schmitt E, Hausmann M (2016) PNA-COMBO-FISH: from combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei. Exp Cell Res 345:51–59

    Article  Google Scholar 

  16. Honig B, Rohs R (2011) Biophysics: flipping Watson and Crick. Nature 470:472–473

    Article  CAS  Google Scholar 

  17. Silahtaroglu A, Pfundheller H, Koshkin A, Tommerup N, Kauppinen S (2004) LNA-modified oligonucleotides are highly efficient as FISH probes. Cytogenet Genome Res 107:32–37

    Article  CAS  Google Scholar 

  18. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088

    Article  CAS  Google Scholar 

  19. Banér J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  Google Scholar 

  20. Yaroslavsky AI, Smolina IV (2013) Fluorescence imaging of single-copy DNA sequences within the human genome using PNA-directed padlock probe assembly. Chem Biol 20:445–453

    Article  CAS  Google Scholar 

  21. Solovei I, Cremer M (2010) 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol 659:117–126

    Article  CAS  Google Scholar 

  22. Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. BioEssays 34:412–426

    Article  Google Scholar 

  23. Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23

    Article  CAS  Google Scholar 

  24. Xu Q, Schlabach MR, Hannon GJ, Elledge SJ (2009) Design of 240,000 orthogonal 25mer DNA barcode probes. Proc Natl Acad Sci U S A 106:2289–2294

    Article  CAS  Google Scholar 

  25. Kozubek M, Matula P (2000) An efficient algorithm for measurement and correction of chromatic aberrations in fluorescence microscopy. J Microsc 200:206–217

    Article  CAS  Google Scholar 

  26. Abraham AV, Ram S, Chao J, Ward ES, Ober RJ (2009) Quantitative study of single molecule location estimation techniques. Opt Express 17:23352–23373

    Article  CAS  Google Scholar 

  27. Stetson PB (1987) DAOPHOT – a computer program for crowded-field stellar photometry. PASP 99:191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Bienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gelali, E., Custodio, J., Girelli, G., Wernersson, E., Crosetto, N., Bienko, M. (2018). An Application-Directed, Versatile DNA FISH Platform for Research and Diagnostics. In: Vavouri, T., Peinado, M. (eds) CpG Islands. Methods in Molecular Biology, vol 1766. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7768-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7768-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7767-3

  • Online ISBN: 978-1-4939-7768-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics