Skip to main content

Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues

  • Protocol
  • First Online:
Transcriptome Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1751))

  • 3798 Accesses

Abstract

Tissue heterogeneity is both a major confounding factor and an underexploited information source. While a handful of reports have demonstrated the potential of supervised methods to deconvolve tissue heterogeneity, these approaches require a priori information on the marker genes or composition of known subpopulations. To address the critical problem of the absence of validated marker genes for many (including novel) subpopulations, we develop a novel unsupervised deconvolution method, Convex Analysis of Mixtures (CAM), within a well-grounded mathematical framework, to dissect mixed gene expressions in heterogeneous tissue samples. To facilitate the utility of this method, we implement an R-Java CAM package that provides comprehensive analytic functions and graphic user interface (GUI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman EP, Awad T, Palma J, Webster T, Hubbell E, Warrington JA, Spira A, Wright GW, Buckley J, Triche T, Davis R, Tibshirani R, Xiao W, Jones W, Tompkins R, West M (2004) Expression profiling-best practices for data generation and interpretation in clinical trials. Nat Rev Genet 5:229–237

    Article  CAS  Google Scholar 

  2. Stuart RO, Wachsman W, Berry CC, Wang J, Wasserman L, Klacansky I, Masys D, Arden K, Goodison S, McClellend M, Wang Y, Sawyers A, Kalcheva I, Tarin D, Mercola D (2004) In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc Natl Acad Sci U S A 101(2):615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  4. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM, Ng K, Ma J, Wienholds E, Dunant C, Pollett A, Gallinger S, McPherson J, Mullighan CG, Shibata D, Dick JE (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548

    Article  CAS  PubMed  Google Scholar 

  5. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM, Butte AJ (2010) Cell type-specific gene expression differences in complex tissues. Nat Methods 7(4):287–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuhn A, Thu D, Waldvogel HJ, Faull RL, Luthi-Carter R (2011) Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain. Nat Methods 8(11):945–947

    Article  CAS  PubMed  Google Scholar 

  7. Yu G, Li H, Ha S, Shih Ie M, Clarke R, Hoffman EP, Madhavan S, Xuan J, Wang Y (2011) PUGSVM: a caBIG analytical tool for multiclass gene selection and predictive classification. Bioinformatics 27(5):736–738

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630

    Article  CAS  PubMed  Google Scholar 

  9. Yuan Y, Failmezger H, Rueda OM, Ali HR, Graf S, Chin SF, Schwarz RF, Curtis C, Dunning MJ, Bardwell H, Johnson N, Doyle S, Turashvili G, Provenzano E, Aparicio S, Caldas C, Markowetz F (2012) Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med 4(157):157ra143

    Article  PubMed  Google Scholar 

  10. Lu P, Nakorchevskiy A, Marcotte EM (2003) Expression deconvolution: a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. Proc Natl Acad Sci U S A 100(18):10370–10375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF (2009) Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 4(7):e6098

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zuckerman NS, Noam Y, Goldsmith AJ, Lee PP (2013) A self-directed method for cell-type identification and separation of gene expression microarrays. PLoS Comput Biol 9(8):e1003189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaujoux R, Seoighe C (2012) Semi-supervised nonnegative matrix factorization for gene expression deconvolution: a case study. Infect Genet Evol 12(5):913–921

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz R, Shackney SE (2010) Applying unmixing to gene expression data for tumor phylogeny inference. BMC Bioinformatics 11:42

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, Tendler A, Mayo AE, Alon U (2015) Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods 12(3):233–235

    Article  CAS  PubMed  Google Scholar 

  16. Zhong Y, Liu Z (2012) Gene expression deconvolution in linear space. Nat Methods 9(1):8–9. Author reply 9

    Article  CAS  Google Scholar 

  17. Wax M, Kailath T (1985) Detection of signals by information theoretic criteria. IEEE Trans Acoustics Speech Signal Process 33(2):387–392

    Article  Google Scholar 

  18. Chen L, Choyke PL, Chan TH, Chi CY, Wang G, Wang Y (2011) Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors. IEEE Trans Med Imaging 30(12):2044–2058

    Article  PubMed  Google Scholar 

  19. Chen L, Chan TH, Choyke PL, Hillman EM, Chi CY, Bhujwalla ZM, Wang G, Wang SS, Szabo Z, Wang Y (2011) CAM-CM: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues. Bioinformatics 27(18):2607–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oja E, Plumbley M (2004) Blind separation of positive sources by globally convergent gradient search. Neural Comput 16:1811–1825

    Article  PubMed  Google Scholar 

  21. Chan TH, Ma WK, Chi CY, Wang Y (2008) A convex analysis framework for blind separation of non-negative sources. IEEE Trans Signal Process 56(10):5120–5134

    Article  Google Scholar 

  22. Wang FY, Chi CY, Chan TH, Wang Y (2010) Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Trans Pattern Anal Mach Intell 32(5):875–888

    Article  PubMed  Google Scholar 

  23. Wang N, Gong T, Clarke R, Chen L, Shih Ie M, Zhang Z, Levine DA, Xuan J, Wang Y (2015) UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples. Bioinformatics 31(1):137–139

    Article  PubMed  Google Scholar 

  24. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Choyke PL, Wang N, Clarke R, Bhujwalla ZM, Hillman EM, Wang G, Wang Y (2014) Unsupervised deconvolution of dynamic imaging reveals intratumor vascular heterogeneity and repopulation dynamics. PLoS One 9(11):e112143

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang N, Meng F, Chen L, Madhavan S, Clarke R, Hoffman E-P, Xuan J, Wang Y (2013) The CAM software for nonnegative blind source separation in R-Java. J Mach Learn Res 14:2899–2903

    Google Scholar 

  27. Kuhn A, Kumar A, Beilina A, Dillman A, Cookson MR, Singleton AB (2012) Cell population-specific expression analysis of human cerebellum. BMC Genomics 13:610

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, Stegle O (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33(2):155–160

    Article  CAS  PubMed  Google Scholar 

  29. Boyd S, Vandenberghe L (2004) Convex optimization, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Frey BJ, Dueck D (2007) Clustering by Passing Messages Between Data Points. Science 315(5814):972–976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niya Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, N., Chen, L., Wang, Y. (2018). Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues. In: Wang, Y., Sun, Ma. (eds) Transcriptome Data Analysis. Methods in Molecular Biology, vol 1751. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7710-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7710-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7709-3

  • Online ISBN: 978-1-4939-7710-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics