Skip to main content

Fluorescence Lifetime Imaging Microscopy (FLIM) as a Tool to Investigate Hypoxia-Induced Protein-Protein Interaction in Living Cells

  • Protocol
  • First Online:
Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1742))

Abstract

Fluorescence resonance energy transfer (FRET) is widely used as a method to investigate protein-protein interactions in living cells. A FRET pair donor fluorophore in close proximity to an appropriate acceptor fluorophore transfers emission energy to the acceptor, resulting in a shorter lifetime of the donor fluorescence. When the respective FRET donor and acceptor are fused with two proteins of interest, a reduction in donor lifetime, as detected by fluorescence lifetime imaging microscopy (FLIM), can be taken as proof of close proximity between the fluorophores and therefore interaction between the proteins of interest. Here, we describe the usage of time-domain FLIM-FRET in hypoxia-related research when we record the interaction of the hypoxia-inducible factor-1 (HIF-1) subunits HIF-1α and HIF-1β in living cells in a temperature- and CO2-controlled environment under the microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun Y, Periasamy A (2015) Localizing protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Methods Mol Biol 1251:83–107. https://doi.org/10.1007/978-1-4939-2080-8_6

    Article  CAS  PubMed  Google Scholar 

  2. Lakowicz JR (2013) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  3. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16. https://doi.org/10.1529/biophysj.107.120154

    Article  CAS  PubMed  Google Scholar 

  4. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472. https://doi.org/10.1126/science.1059796

    Article  CAS  PubMed  Google Scholar 

  5. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. https://doi.org/10.1038/nmeth819

    Article  CAS  PubMed  Google Scholar 

  7. Walther KA, Papke B, Sinn MB, Michel K, Kinkhabwala A (2011) Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. Mol Biosyst 7(2):322–336. https://doi.org/10.1039/c0mb00132e

    Article  CAS  PubMed  Google Scholar 

  8. Verveer PJ (2014) Advanced fluorescence microscopy: methods and protocols. Springer, New York

    Google Scholar 

  9. Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. Methods Cell Biol 123:77–94. https://doi.org/10.1016/b978-0-12-420138-5.00005-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Verveer PJ, Squire A, Bastiaens PI (2000) Global analysis of fluorescence lifetime imaging microscopy data. Biophys J 78(4):2127–2137. https://doi.org/10.1016/S0006-3495(00)76759-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clayton AH, Hanley QS, Verveer PJ (2004) Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc 213(Pt 1):1–5

    Article  CAS  PubMed  Google Scholar 

  12. Grecco HE, Roda-Navarro P, Verveer PJ (2009) Global analysis of time correlated single photon counting FRET-FLIM data. Opt Express 17(8):6493–6508

    Article  CAS  PubMed  Google Scholar 

  13. Prost-Fingerle K, Hoffmann MD, Schutzhold V, Cantore M, Fandrey J (2017) Optical analysis of cellular oxygen sensing. Exp Cell Res 356(2):122–127. https://doi.org/10.1016/j.yexcr.2017.03.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Fandrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schützhold, V., Fandrey, J., Prost-Fingerle, K. (2018). Fluorescence Lifetime Imaging Microscopy (FLIM) as a Tool to Investigate Hypoxia-Induced Protein-Protein Interaction in Living Cells. In: Huang, L. (eds) Hypoxia. Methods in Molecular Biology, vol 1742. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7665-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7665-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7664-5

  • Online ISBN: 978-1-4939-7665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics