Skip to main content

Evaluation of Vascularity, Blood Perfusion, and Oxygen Tension in Tumor Xenografts with Fluorescent Microscopy

  • Protocol
  • First Online:
Glioblastoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1741))

Abstract

Histologic heterogeneity in glioblastoma (GBM) is highlighted by regional variability in vascular density. Areas of vascular hyperplasia are interspersed with avascular territories, in which necrosis is surrounded by a zone of hypoxic tumor cells expressing stem cell markers, a phenomenon known as pseudopalisading necrosis. This vascular heterogeneity suggests intratumoral oxygen gradients, which regulate cellular and metabolic adaptations in tumor cells. Quantification of tumor vascularity, blood perfusion and oxygenation is therefore critical. In this chapter, we describe three different methods, all of which involve microscopy to analyze these parameters in tumor xenografts. We present detailed protocols for analysis of tumor endothelium using endothelial markers, blood perfusion by systemic infusion of Evans Blue and oxygen tension by pimonidazole injection, followed by immunostaining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research N (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173. https://doi.org/10.1016/j.ccr.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  3. De Silva D, Duffty P, Booth P, Auchterlonie I, Morrison N, Dean JC (1995) Family studies in chromosome 22q11 deletion: further demonstration of phenotypic heterogeneity. Clin Dysmorphol 4(4):294–303

    Article  PubMed  Google Scholar 

  4. Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, Leversha MA, Mikkelsen T, Brennan CW (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109(8):3041–3046. https://doi.org/10.1073/pnas.1114033109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539

    Article  PubMed  Google Scholar 

  6. Bayin NS, Frenster JD, Sen R, Si S, Modrek AS, Galifianakis N, Dolgalev I, Ortenzi V, Illa-Bochaca I, Khahera A, Serrano J, Chiriboga L, Zagzag D, Golfinos JG, Doyle W, Tsirigos A, Heguy A, Chesler M, Barcellos-Hoff MH, Snuderl M, Placantonakis DG (2017) Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget. https://doi.org/10.18632/oncotarget.18117

  7. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  8. Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80(5):654–665. https://doi.org/10.1016/j.bcp.2010.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1):17–28. https://doi.org/10.1002/stem.261

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jamal M, Rath BH, Williams ES, Camphausen K, Tofilon PJ (2010) Microenvironmental regulation of glioblastoma radioresponse. Clin Cancer Res 16(24):6049–6059. https://doi.org/10.1158/1078-0432.CCR-10-2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. https://doi.org/10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  13. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82. https://doi.org/10.1016/j.ccr.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  14. Christensen K, Schroder HD, Kristensen BW (2008) CD133 identifies perivascular niches in grade II–IV astrocytomas. J Neurooncol 90(2):157–170. https://doi.org/10.1007/s11060-008-9648-8

    Article  PubMed  Google Scholar 

  15. Christensen K, Schroder HD, Kristensen BW (2011) CD133+ niches and single cells in glioblastoma have different phenotypes. J Neurooncol 104(1):129–143. https://doi.org/10.1007/s11060-010-0488-y

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert MR, Sulman EP, Mehta MP (2014) Bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(21):2048–2049. https://doi.org/10.1056/NEJMc1403303

    Article  CAS  PubMed  Google Scholar 

  17. Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, Eichler AF, Drappatz J, Hochberg FH, Benner T, Louis DN, Cohen KS, Chea H, Exarhopoulos A, Loeffler JS, Moses MA, Ivy P, Sorensen AG, Wen PY, Jain RK (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28(17):2817–2823. https://doi.org/10.1200/JCO.2009.26.3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN (2010) Hypoxia inducible factors in cancer stem cells. Br J Cancer 102(5):789–795. https://doi.org/10.1038/sj.bjc.6605551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, Weil RJ, Nakano I, Sarkaria JN, Stringer BW, Day BW, Li M, Lathia JD, Rich JN, Hjelmeland AB (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16(10):1373–1382. https://doi.org/10.1038/nn.3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, McLendon R, Lindner D, Sloan A, Rich JN (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18(5):829–840. https://doi.org/10.1038/cdd.2010.150

    Article  CAS  PubMed  Google Scholar 

  22. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177(3):1491–1502. https://doi.org/10.2353/ajpath.2010.091021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88(11):2606–2618

    Article  CAS  PubMed  Google Scholar 

  24. Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181(4):1126–1141. https://doi.org/10.1016/j.ajpath.2012.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–736. https://doi.org/10.1038/nrc2246

    Article  CAS  PubMed  Google Scholar 

  26. Varghese AJ, Gulyas S, Mohindra JK (1976) Hypoxia-dependent reduction of 1-(2-nitro-1-imidazolyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo. Cancer Res 36(10):3761–3765

    CAS  PubMed  Google Scholar 

  27. Walchli T, Mateos JM, Weinman O, Babic D, Regli L, Hoerstrup SP, Gerhardt H, Schwab ME, Vogel J (2015) Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat Protoc 10(1):53–74. https://doi.org/10.1038/nprot.2015.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris G. Placantonakis MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bayin, N.S., Placantonakis, D.G. (2018). Evaluation of Vascularity, Blood Perfusion, and Oxygen Tension in Tumor Xenografts with Fluorescent Microscopy. In: Placantonakis, D. (eds) Glioblastoma. Methods in Molecular Biology, vol 1741. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7659-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7659-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7658-4

  • Online ISBN: 978-1-4939-7659-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics