Use of a Hollow Fiber Bioreactor to Collect Extracellular Vesicles from Cells in Culture

  • Irene K. Yan
  • Neha Shukla
  • David A. Borrelli
  • Tushar PatelEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1740)


Current approaches for collection of extracellular vesicles (EV) are based on classical cell culture media production. This involves collection from cells grown in flasks, and can require multiple rounds of centrifugation or filtration, followed by ultracentrifugation or density gradient centrifugation. There are several limitations of these approaches, for example, they require a large input volume, the yield and concentration is low, and the process is time consuming. Most cell cultures require the use of fetal bovine serum which contains a large amount of endogenous EV that can contaminate isolations of cell-derived EVs. The use of cell cultures within a hollow fiber bioreactor could address many of these limitations and produce a continuous source of highly concentrated EVs without contamination from serum EVs, and that are suitable for downstream applications.


Extracellular vesicles Isolation Hollow fiber bioreactor Exosomes 


  1. 1.
    Gramer MJ, Poeschl DM (2000) Comparison of cell growth in T-flasks, in micro hollow fiber bioreactors, and in an industrial scale hollow fiber bioreactor system. Cytotechnology 34(1–2):111–119. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Storm MP, Sorrell I, Shipley R, Regan S, Luetchford KA, Sathish J, Webb S, Ellis MJ (2016) Hollow fiber bioreactors for in vivo-like mammalian tissue culture. J Vis Exp (111).
  3. 3.
    Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Sun M, Morales-Kastresana A, Jones JC, Felber BK, Chen X, Gursel I, Pavlakis GN (2016) Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205. CrossRefPubMedGoogle Scholar
  4. 4.
    Tapia F, Vazquez-Ramirez D, Genzel Y, Reichl U (2016) Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl Microbiol Biotechnol 100(5):2121–2132. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barckhausen C, Rice B, Baila S, Sensebe L, Schrezenmeier H, Nold P, Hackstein H, Rojewski MT (2016) GMP-compliant expansion of clinical-grade human mesenchymal stromal/stem cells using a closed hollow fiber bioreactor. Methods Mol Biol 1416:389–412. CrossRefPubMedGoogle Scholar
  6. 6.
    Curcio E, Piscioneri A, Salerno S, Tasselli F, Morelli S, Drioli E, Bartolo LD (2012) Human lymphocytes cultured in 3-D bioreactors: influence of configuration on metabolite transport and reactions. Biomaterials 33(33):8296–8303. CrossRefPubMedGoogle Scholar
  7. 7.
    De Bartolo L, Salerno S, Curcio E, Piscioneri A, Rende M, Morelli S, Tasselli F, Bader A, Drioli E (2009) Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials 30(13):2531–2543. CrossRefPubMedGoogle Scholar
  8. 8.
    Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kogure T, Patel T (2013) Isolation of extracellular nanovesicle microRNA from liver cancer cells in culture. Methods Mol Biol 1024:11–18. CrossRefPubMedGoogle Scholar
  10. 10.
    Xu R, Simpson RJ, Greening DW (2017) A protocol for isolation and proteomic characterization of distinct extracellular vesicle subtypes by sequential centrifugal ultrafiltration. Methods Mol Biol 1545:91–116. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Irene K. Yan
    • 1
  • Neha Shukla
    • 1
  • David A. Borrelli
    • 1
  • Tushar Patel
    • 1
    Email author
  1. 1.Department of TransplantationMayo ClinicJacksonvilleUSA

Personalised recommendations