Skip to main content

Ion Pair Chromatography for Endogenous Metabolites LC-MS Analysis in Tissue Samples Following Targeted Acquisition

  • Protocol
  • First Online:
Metabolic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1738))

Abstract

A protocol for the preparation of tissue extracts for the targeted analysis of ca. 150 polar metabolites, including those involved in central carbon metabolism is described, using a reversed-phase ion pair U(H)PLC-MS method. Data collection enabled by multiple-reaction monitoring provides highly specific, sensitive acquisition of metabolic intermediates with a wide range of physicochemical properties and pathway coverage. Technical aspects are discussed for method transfer along with the basic principles of sample sequence setup, data analysis, and validation. General comments are given to help the assessment of data quality and system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bales JR et al (1998) Metabolic profiling of body fluids by proton NMR: self-poisoning episodes with paracetamol (acetaminophen). Magn Reson Med 6(3):300–306

    Article  Google Scholar 

  2. Nicholson JK, Wilson ID (1989) High resolution proton magnetic resonance spectroscopy of biological fluids. Prog Nucl Magn Reson Spectrosc 21(4–5):449–501

    Article  CAS  Google Scholar 

  3. Barzilai A et al (1991) Phosphate metabolites and steroid hormone receptors of benign and malignant breast tumors. A nuclear magnetic resonance study. Cancer 67(11):2919–2925

    Article  CAS  Google Scholar 

  4. Gavaghan CL et al (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett 484(3):169–174

    Article  CAS  Google Scholar 

  5. Kurhanewicz J et al (1995) Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology 45(3):459–466

    Article  CAS  Google Scholar 

  6. Lynch MJ, Nicholson JK (1997) Proton MRS of human prostatic fluid: correlations between citrate, spermine, and myo-inositol levels and changes with disease. The Prostat 30(4):248–255

    Article  CAS  Google Scholar 

  7. Marx A et al (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49(2):111–129

    Article  CAS  Google Scholar 

  8. Gika HG et al (2010) Does the mass spectrometer define the marker? A comparison of global metabolite profiling data generated simultaneously via UPLC-MS on two different mass spectrometers. Anal Chem 82(19):8226–8234

    Article  CAS  Google Scholar 

  9. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem 24(4):285–294

    Article  CAS  Google Scholar 

  10. Lenz EM, Wilson ID (2007) Analytical strategies in Metabonomics. J Proteome Res 6(2):443–458

    Article  CAS  Google Scholar 

  11. Lindon JC, Nicholson JK (2008) Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. TrAC Trends Anal Chem 27(3):194–204

    Article  CAS  Google Scholar 

  12. Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends Anal Chem 27(3):251–260

    Article  CAS  Google Scholar 

  13. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7(2):128–139

    Article  CAS  Google Scholar 

  14. Smith CA et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787

    Article  CAS  Google Scholar 

  15. Xia J et al (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(W1):W127–W133

    Article  CAS  Google Scholar 

  16. Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC–MS-based targeted metabolomics. J Chromatogr B 871(2):236–242

    Article  CAS  Google Scholar 

  17. Buescher JM et al (2010) Ultrahigh performance liquid chromatography− tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82(11):4403–4412

    Article  CAS  Google Scholar 

  18. Michopoulos F et al (2014) Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and-ultra high performance liquid chromatography coupled to tandem mass spectrometry: applications to serum, urine and tissue extracts. J Chromatogr A 1349:60–68

    Article  CAS  Google Scholar 

  19. Gika HG et al (2012) Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1259:121–127

    Article  CAS  Google Scholar 

  20. Schiesel S, Lämmerhofer M, Lindner W (2010) Multitarget quantitative metabolic profiling of hydrophilic metabolites in fermentation broths of β-lactam antibiotics production by HILIC–ESI–MS/MS. Anal and Bioanal Chem 396(5):1655–1679

    Article  CAS  Google Scholar 

  21. Yuan M et al (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7(5):872–881

    Article  CAS  Google Scholar 

  22. Kloos D et al (2014) Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. TrAC Trends Anal Chem 61:17–28

    Article  CAS  Google Scholar 

  23. Kloos D et al (2012) Derivatization of the tricarboxylic acid cycle intermediates and analysis by online solid-phase extraction-liquid chromatography–mass spectrometry with positive-ion electrospray ionization. J Chromatogr A 1232:19–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Michopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michopoulos, F. (2018). Ion Pair Chromatography for Endogenous Metabolites LC-MS Analysis in Tissue Samples Following Targeted Acquisition. In: Theodoridis, G., Gika, H., Wilson, I. (eds) Metabolic Profiling. Methods in Molecular Biology, vol 1738. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7643-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7643-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7642-3

  • Online ISBN: 978-1-4939-7643-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics