Skip to main content
Log in

Multitarget quantitative metabolic profiling of hydrophilic metabolites in fermentation broths of β-lactam antibiotics production by HILIC–ESI–MS/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The presented work deals with the development and comprehensive validation of a quantitative LC–electrospray ionization (ESI)–tandem mass spectrometry (MS/MS) method using a triple quadrupole instrument in the MRM mode for the metabolic profiling of amino acids, organic acids, vitamins, some biogenic amines, secondary metabolites of β-lactam antibiotics biosynthesis as well as their intermediates, and degradation products in fermentation broths of β-lactam antibiotics production (in total 57 hydrophilic compounds). A great number of chromatographic systems (22 different stationary phase/mobile phase conditions) were screened for their adequate chromatographic selectivity to cope with isobaric compounds and other critical analyte pairs. Finally, a hydrophilic interaction liquid chromatography (HILIC) method employing a zwitterionic ZIC-HILIC column was selected as best compromise. Particular focus was given on the elucidation of absolute and relative matrix effects via comparison of slopes of calibration functions of spiked matrix and standard solutions. These data as well as precision and accuracy data confirm suitability of the HILIC–ESI–MS/MS assay for metabolic profiling studies in fermentation samples. Detailed comprehensive data sets are presented which should illustrate critical issues, problems, and challenges of multitarget quantitative metabolic profiling and should outline possible strategies to circumvent pitfalls and overcome common problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elander RP (2003) Appl Microbiol Biotechnol 61:385–392

    CAS  Google Scholar 

  2. Oldiges M, Luetz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Appl Microbiol Biotechnol 76:495–511

    Article  CAS  Google Scholar 

  3. Weckwerth W, Fiehn O (2002) Curr Opin Biotechnol 13:156–160

    Article  CAS  Google Scholar 

  4. Holmes E, Tang H, Wang Y, Seger C (2006) Planta Med 72:771–785

    Article  CAS  Google Scholar 

  5. Dettmer K, Aronov PA, Hammock BD (2007) Mass Spectrom Rev 26:51–78

    Article  CAS  Google Scholar 

  6. Lu W, Bennett BD, Rabinowitz JD (2008) J Chromatogr B 871:236–242

    Article  CAS  Google Scholar 

  7. Lu X, Zhao X, Bai C, Zhao C, Lu G, Xu G (2008) J Chromatogr B 866:64–76

    CAS  Google Scholar 

  8. Issaq HJ, Abbott E, Veenstra TD (2008) J Sep Sci 31:1936–1947

    Article  CAS  Google Scholar 

  9. Timischl B, Dettmer K, Oefner PJ (2008) Anal Bioanal Chem 391:895–898

    Article  CAS  Google Scholar 

  10. Bedair M, Sumner LW (2008) Trends Anal Chem 27:238–250

    Article  CAS  Google Scholar 

  11. Theodoridis G, Gika HG, Wilson ID (2008) Trends Anal Chem 27:251–260

    Article  CAS  Google Scholar 

  12. Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) J Sep Sci 32:2183–2199

    Article  CAS  Google Scholar 

  13. Dunn WB, Ellis DI (2005) Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  14. Idborg H, Zamani L, Edlund P-O, Schuppe-Koistinen I, Jacobsson SP (2005) J Chromatogr B 828:9–13

    Article  CAS  Google Scholar 

  15. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Annu Rev Pharmacol Toxicol 48:653–683

    Article  CAS  Google Scholar 

  16. Gika HG, Macpherson E, Theodoridis GA, Wilson ID (2008) J Chromatogr B 871:299–305

    Article  CAS  Google Scholar 

  17. Gika HG, Theodoridis GA, Wilson ID (2008) J Sep Sci 31:1598–1608

    Article  CAS  Google Scholar 

  18. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Nat Rev Microbiol 3:557–565

    Article  CAS  Google Scholar 

  19. Mapelli V, Olsson L, Nielsen J (2008) Trends Biotechnol 26:490–497

    Article  CAS  Google Scholar 

  20. Carrau FM, Medina K, Farina L, Boido E, Henschke PA, Dellacassa E (2008) FEMS Yeast Res 8:1196–1207

    Article  CAS  Google Scholar 

  21. Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Comp Funct Genomics 4:376–391

    Article  CAS  Google Scholar 

  22. Lu W, Kimball E, Rabinowitz JD (2006) J Am Soc Mass Spectrom 17:37–50

    Article  CAS  Google Scholar 

  23. Morgenthal K, Wienkoop S, Scholz M, Selbig J, Weckwerth W (2005) Metabolomics 1:109–121

    Article  CAS  Google Scholar 

  24. Bicalho B, David F, Rumplel K, Kindt E, Sandra P (2008) J Chromatogr A 1211:120–128

    Article  CAS  Google Scholar 

  25. Tian J, Sang P, Gao P, Fu R, Yang D, Zhang L, Zhou J, Wu S, Lu X, Li Y, Xu G (2009) J Sep Sci 32:2281–2288

    Article  CAS  Google Scholar 

  26. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) J Chromatogr A 1125:76–88

    Article  CAS  Google Scholar 

  27. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) J Chromatogr A 1147:153–164

    Article  CAS  Google Scholar 

  28. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) J Proteome Res 2:488–494

    Article  CAS  Google Scholar 

  29. Timischl B, Dettmer K, Kaspar H, Thieme M, Oefner PJ (2008) Electrophoresis 29:2203–2214

    Article  CAS  Google Scholar 

  30. Ramautar R, Somsen GW, de Jong GJ (2009) Electrophoresis 30:276–291

    Article  CAS  Google Scholar 

  31. Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N (2009) Anal Chem 81:2135–2143

    Article  CAS  Google Scholar 

  32. Schiesel S, Laemmerhofer M, Lindner W (2009) Anal Bioanal Chem. doi:10.1007/s00216-009-3340-5

  33. Alpert AJ (1990) J Chromatogr 499:177–196

    Article  CAS  Google Scholar 

  34. Guo Y, Gaiki S (2005) J Chromatogr A 1074:71–80

    Article  CAS  Google Scholar 

  35. Hemstroem P, Irgum K (2006) J Sep Sci 29:1784–1821

    Article  CAS  Google Scholar 

  36. Langrock T, Czihal P, Hoffmann R (2006) Amino Acids 30:291–297

    Article  CAS  Google Scholar 

  37. Schlichtherle-Cerny H, Affolter M, Cerny C (2003) Anal Chem 75:2349–2354

    Article  CAS  Google Scholar 

  38. Chaimbault P, Petritis K, Elfakir C, Dreux M (1999) J Chromatogr A 855:191–202

    Article  CAS  Google Scholar 

  39. Coulier L, Bas R, Jespersen S, Verheij E, Van der Werf MJ, Hankemeier T (2006) Anal Chem 78:6573–6582

    Article  CAS  Google Scholar 

  40. Huck JHJ, Struys EA, Verhoeven NM, Jakobs C, van der Knaap MS (2003) Clin Chem 49:1375–1380

    Article  CAS  Google Scholar 

  41. Mariella Zoppa LG, Zacchello F, Giordano G (2006) J Chromatogr B 831:267–273

    Article  CAS  Google Scholar 

  42. Seifar RM, Zhao Z, van Dam J, van Winden W, van Gulik W, Heijnen JJ (2008) J Chromatogr A 1187:103–110

    Article  CAS  Google Scholar 

  43. Laemmerhofer M, Richter M, Wu J, Nogueira R, Bicker W, Lindner W (2008) J Sep Sci 31:2572–2588

    Article  CAS  Google Scholar 

  44. Nguyen HP, Schug KA (2008) J Sep Sci 31:1465–1480

    Article  CAS  Google Scholar 

  45. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  46. Taylor PJ (2005) Clin Biochem 38:328–334

    Article  CAS  Google Scholar 

  47. Beaudry F, Vachon P (2006) Biomed Chromatogr 20:200–205

    Article  CAS  Google Scholar 

  48. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) J Am Soc Mass Spectrom 11:942–950

    Article  CAS  Google Scholar 

  49. Tang K, Page JS, Smith RD (2004) J Am Soc Mass Spectrom 15:1416–1423

    Article  CAS  Google Scholar 

  50. Mei H (2005) Matrix effects: causes and solutions. In: Korfmacher WA (ed) Using mass spectrometry for drug metabolism studies. CRC, Boca Raton, pp 103–150

    Google Scholar 

  51. Bicker W, Laemmerhofer M, Keller T, Schuhmacher R, Krska R, Lindner W (2006) Anal Chem 78:5884–5892

    Article  CAS  Google Scholar 

  52. Stokvis E, Rosing H, Beijnen JH (2005) Rapid Commun Mass Spectrom 19:401–407

    Article  CAS  Google Scholar 

  53. Wang S, Cyronak M, Yang E (2007) J Pharm Biomed Anal 43:701–707

    Article  CAS  Google Scholar 

  54. Mashego MR, Rumbold K, Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Biotechnol Lett 29:1–16

    Article  CAS  Google Scholar 

  55. Boettcher C, Roepenack-Lahaye EV, Willscher E, Scheel D, Clemens S (2007) Anal Chem 79:1507–1513

    Article  CAS  Google Scholar 

  56. Beltran E, Ibanez M, Sancho JV, Hernandez F (2009) Rapid Commun Mass Spectrom 23:1801–1809

    Article  CAS  Google Scholar 

  57. Villagrasa M, Guillamon M, Eljarrat E, Barcelo D (2007) J Chromatogr A 1157:108–114

    Article  CAS  Google Scholar 

  58. Matuszewski BK (2006) J Chromatogr B 830:293–300

    Article  CAS  Google Scholar 

  59. FDA (2001) Guidance for industry. Bioanalytical method validation, Food and Drug Administration, Rockville

    Google Scholar 

  60. Wu L, Mashego MR, Van Dam JC, Proell AM, Vinke JL, Ras C, Van Winden WA, Van Gulik WM, Heijnen JJ (2005) Anal Biochem 336:164–171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Austrian Christian Doppler Research Society and the industry partner Sandoz (Kundl, Austria) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lämmerhofer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiesel, S., Lämmerhofer, M. & Lindner, W. Multitarget quantitative metabolic profiling of hydrophilic metabolites in fermentation broths of β-lactam antibiotics production by HILIC–ESI–MS/MS. Anal Bioanal Chem 396, 1655–1679 (2010). https://doi.org/10.1007/s00216-009-3432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3432-2

Keywords

Navigation