Skip to main content

Identification of New Bacterial Small RNA Targets Using MS2 Affinity Purification Coupled to RNA Sequencing

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

Small regulatory RNAs (sRNAs) are ubiquitous regulatory molecules expressed in living cells. In prokaryotes, sRNAs usually bind to target mRNAs to either promote their degradation or interfere with translation initiation. Because a single sRNA can regulate a considerable number of target mRNAs, we seek to identify those targets rapidly and reliably. Here, we present a robust method based on the co-purification of target mRNAs bound to MS2-tagged sRNAs expressed in vivo. After purification of the tagged-sRNA, we use RNAseq to determine the identity of all RNA interacting partners and their enrichment level. We describe how to analyze the RNAseq data through the Galaxy Project Platform bioinformatics tools to identify new mRNA targets. This technique is applicable to most sRNAs of E. coli and Salmonella.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner EGH, Romby P (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 90:133–208

    PubMed  Google Scholar 

  2. Modi SR, Camacho DM, Kohanski MA et al (2011) Functional characterization of bacterial sRNAs using a network biology approach. Proc Natl Acad Sci U S A 108:15522–15527. https://doi.org/10.1073/pnas.1104318108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saliba A-E, C Santos S, Vogel J (2017) New RNA-seq approaches for the study of bacterial pathogens. Curr Opin Microbiol 35:78–87. https://doi.org/10.1016/j.mib.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Lalaouna D, Morissette A, Carrier M-C, Massé E (2015) DsrA regulatory RNA represses both HNS and RBS D mRNAs through distinct mechanisms in E scherichia coli. Mol Microbiol 98:357–369. https://doi.org/10.1111/mmi.13129

    Article  CAS  PubMed  Google Scholar 

  5. Wroblewska Z, Olejniczak M (2016) Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA 22:979–994. https://doi.org/10.1261/rna.055251.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chabelskaya S, Gaillot O, Felden B (2010) A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog 6:e1000927. https://doi.org/10.1371/journal.ppat.1000927

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lalaouna D, Prévost K, Eyraud A, Massé E (2017) Identification of unknown RNA partners using MAPS. Methods 117:28–34. https://doi.org/10.1016/j.ymeth.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  8. Afgan E, Baker D, van den Beek M et al (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3–W10. https://doi.org/10.1093/nar/gkw343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blankenberg D, Gordon A, Von Kuster G et al (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26:1783–1785. https://doi.org/10.1093/bioinformatics/btq281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andrews S (2010) Babraham bioinformatics - FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  11. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  12. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan PP, Holmes AD, Smith AM et al (2012) The UCSC archaeal genome browser: 2012 update. Nucleic Acids Res 40:D646–D652. https://doi.org/10.1093/nar/gkr990

    Article  CAS  PubMed  Google Scholar 

  14. Desnoyers G, Massé E (2012) Activity of small RNAs on the stability of targeted mRNAs in vivo. Methods Mol Biol 905:245–255

    CAS  PubMed  Google Scholar 

  15. Corcoran CP, Rieder R, Podkaminski D et al (2012) Use of aptamer tagging to identify in vivo protein binding partners of small regulatory RNAs. Methods Mol Biol 905:177–200

    CAS  PubMed  Google Scholar 

  16. Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910

    CAS  PubMed  Google Scholar 

  17. Massé E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971. https://doi.org/10.1128/JB.187.20.6962-6971.2005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by an operating grant from the Canadian Institutes of Health Research (CIHR) to EM. M.-C.C. holds an Alexander Graham Bell Doctoral scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Massé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carrier, MC., Laliberté, G., Massé, E. (2018). Identification of New Bacterial Small RNA Targets Using MS2 Affinity Purification Coupled to RNA Sequencing. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics