Skip to main content

Analysis of Fission Yeast Single DNA Molecules on the Megabase Scale Using DNA Combing

  • Protocol
  • First Online:
Schizosaccharomyces pombe

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1721))

Abstract

DNA combing enables the quantitative analysis of DNA replication, DNA recombination, DNA–protein interaction, and DNA methylation along genomic single DNA molecules at 1 kb resolution. However, DNA combing has been restricted to short 200–500 kb long DNA fragments, which introduces significant bias in data analysis. An improved DNA combing methodology that allows to routinely image Mb-scale single DNA molecules and occasionally up to full-length fission yeast chromosomes is presented in this chapter. DNA combing of Mb-scale single DNA molecules can be applied to accurately measure the dynamic properties of DNA replication such as the rate of origin firing, replication fork velocity, fork directionality and the frequency of fork blockage. In addition, Mb-scale single DNA molecules enable the quantitative analysis of complex genomic rearrangements including gross chromosomal translocations, repetitive DNA sequences, large deletions, and duplications, which are difficult to investigate with deep sequencing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N (2006) DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17(1):308–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Czajkowsky DM, Liu J, Hamlin JL, Shao Z (2008) DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol 375(1):12–19

    Article  CAS  PubMed  Google Scholar 

  3. Kaykov A, Nurse P (2015) The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res 25(3):391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    Article  CAS  PubMed  Google Scholar 

  5. Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities. Proc Natl Acad Sci U S A 104(48):18958–18963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR (2007) The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448(7156):947–951

    Article  PubMed  Google Scholar 

  7. Herrick J, Bensimon A (1999b) Single molecule analysis of DNA replication. Biochimie 81(8–9):859–871

    Article  CAS  PubMed  Google Scholar 

  8. Heichinger C, Penkett CJ, Bahler J, Nurse P (2006) Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25(21):5171–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayashi M, Katou Y, Itoh T, Tazumi A, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 26(5):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265(5181):2096–2098

    Article  CAS  PubMed  Google Scholar 

  11. Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V (1997) pH-dependent specific binding and combing of DNA. Biophys J 73(4):2064–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bensimon D, Simon AJ, Croquette VV, Bensimon A (1995) Stretching DNA with a receding meniscus: experiments and models. Phys Rev Lett 74(23):4754–4757

    Article  CAS  PubMed  Google Scholar 

  13. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283(5408):1727–1730

    Article  CAS  PubMed  Google Scholar 

  14. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, van Slegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277(5331):1518–1523

    Article  CAS  PubMed  Google Scholar 

  15. Lebofsky R, Bensimon A (2003) Single DNA molecule analysis: applications of molecular combing. Brief Funct Genomic Proteomic 1(4):385–396

    Article  CAS  PubMed  Google Scholar 

  16. Sivakumar S, Porter-Goff M, Patel PK, Benoit K, Rhind N (2004) In vivo labeling of fission yeast DNA with thymidine and thymidine analogs. Methods 33(3):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, Finkelstein J, Agarwal T, O'Donnell ME (2014) Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 21(8):664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pasero P, Bensimon A, Schwob E (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16(19):2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lebofsky R, Bensimon A (2005) DNA replication origin plasticity and perturbed fork progression in human inverted repeats. Mol Cell Biol 25(15):6789–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheeseman K, Rouleau E, Vannier A, Thomas A, Briaux A, Lefol C, Walrafen P, Bensimon A, Lidereau R, Conseiller E, Ceppi M (2012) A diagnostic genetic test for the physical mapping of germline rearrangements in the susceptibility breast cancer genes BRCA1 and BRCA2. Hum Mutat 33(6):998–1009

    Article  CAS  PubMed  Google Scholar 

  21. Tuduri S, Tourriere H, Pasero P (2010) Defining replication origin efficiency using DNA fiber assays. Chromosome Res 18(1):91–102

    Article  CAS  PubMed  Google Scholar 

  22. Techer H, Koundrioukoff S, Azar D, Wilhelm T, Carignon S, Brison O, Debatisse M, Le Tallec B (2013) Replication dynamics: biases and robustness of DNA fiber analysis. J Mol Biol 425(23):4845–4855

    Article  CAS  PubMed  Google Scholar 

  23. Kaykov A, Taillefumier T, Bensimon A, Nurse P (2016) Molecular combing of single DNA molecules on the 10 megabase scale. Sci Rep 6:19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nemeth A (2014) Methyl-combing: single-molecule analysis of DNA methylation on stretched DNA fibers. Methods Mol Biol 1094:233–241

    Article  CAS  PubMed  Google Scholar 

  25. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  26. Hagan IM, Grallert A, Simanis V (2016) Cell cycle synchronization of schizosaccharomyces pombe by centrifugal elutriation of small cells. Cold Spring Harb Protoc 2016(6):pdb prot091231

    Article  PubMed  Google Scholar 

  27. Bianco JN, Poli J, Saksouk J, Bacal J, Silva MJ, Yoshida K, Lin YL, Tourriere H, Lengronne A, Pasero P (2012) Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods 57(2):149–157

    Article  CAS  PubMed  Google Scholar 

  28. Beach DH (1983) Cell type switching by DNA transposition in fission yeast. Nature 305:682–688

    Article  CAS  Google Scholar 

  29. Toda T, Nakaseko Y, Niwa O, Yanagida M (1984) Mapping of rRNA genes by integration of hybrid plasmids in Schizosaccharomyces pombe. Curr Genet 8(2):93–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Irma T. Hirschl and Charles Revson postdoctoral fellowships and Wellcome Trust Grant to PN [grant number 093917] and The Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Nurse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaykov, A., Nurse, P. (2018). Analysis of Fission Yeast Single DNA Molecules on the Megabase Scale Using DNA Combing. In: Singleton, T. (eds) Schizosaccharomyces pombe. Methods in Molecular Biology, vol 1721. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7546-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7546-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7545-7

  • Online ISBN: 978-1-4939-7546-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics