Advertisement

Systems Biology Modeling of Nonlinear Cancer Dynamics

  • Christian Cherubini
  • Simonetta FilippiEmail author
  • Alessandro Loppini
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1702)

Abstract

Systems Biology represents nowadays a promising standard framework for natural and human sciences to attack complicated problems involving Life. Here a particular application of such a program is discussed in the case of Cancer, by using a basic toy model for solid tumor spread for framing together two apparently different conceptual leading paradigms of Oncogenesis.

Key words

Cancer Systems biology Computational biology Mathematical modeling 

References

  1. 1.
    Thompson DW (1992) On growth and form, revised edition. Dover Publications, New YorkCrossRefGoogle Scholar
  2. 2.
    Jean RV (1994) Phyllotaxis. A systemic study in plant morphogenesis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Keener J, Sneyd J (1998) Mathematical physiology. Springer, New YorkGoogle Scholar
  4. 4.
    Bini D, Cherubini C, Filippi S, Gizzi A, Ricci PE (2010) On spiral waves arising in natural systems. Commun Comput Phys 8(3):610–622Google Scholar
  5. 5.
    Winfree AT (2010) The geometry of biological time. Springer, New YorkGoogle Scholar
  6. 6.
    Murray JD (2002) Mathematical biology, vol vols 1 and 2. Springer, New YorkGoogle Scholar
  7. 7.
    Kondepudi D, Prigogine I (2014) Modern thermodynamics: from heat engines to dissipative structures, 2nd edn. Wiley, Hoboken, NJGoogle Scholar
  8. 8.
    Loppini A, Capolupo A, Cherubini C, Gizzi A, Bertolaso M, Filippi S, Vitiello G (2014) On the coherent behavior of pancreatic beta cell clusters. Phys Lett A 378(44):3210–3217CrossRefGoogle Scholar
  9. 9.
    Bertolaso M, Capolupo A, Cherubini C, Filippi S, Gizzi A, Loppini A, Vitiello G (2015) The role of coherence in emergent behavior of biological systems. Electromag Biol Med 34(2):138–140CrossRefGoogle Scholar
  10. 10.
    Saaty TL (2011) Modern nonlinear equations. Dover Publications, New YorkGoogle Scholar
  11. 11.
    Saaty TL (2010) Nonlinear mathematics. Dover Publications, New YorkGoogle Scholar
  12. 12.
    Cherubini C, Filippi S (2009) Lagrangian field theory of reaction-diffusion. Phys Rev E 80(4):046117CrossRefGoogle Scholar
  13. 13.
    Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72CrossRefGoogle Scholar
  14. 14.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nowak MA, May RM (2000) Virus dynamics. Mathematical principles of immunology and virology. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Noble D (2008) The music of life: biology beyond genes, 1st edn. Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Proctor RN (2000) The Nazi war on cancer. Princeton University Press, Princeton, NJGoogle Scholar
  18. 18.
    Werner HMJ, Mills GB, Ram PT (2014) Cancer systems biology: a peek into the future of patient care? Nat Rev Clin Oncol 11:167–176CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Abbas AK, Lichtman AHH, Pillai S (2017) Cellular and molecular immunology, 9th edn. Elsevier, Philadelphia, PAGoogle Scholar
  20. 20.
    Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26:1097–1107CrossRefPubMedGoogle Scholar
  21. 21.
    Sonnenschein C, Soto AM (2008) Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol 18:372–377CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Potter JD (2007) Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7:464–474CrossRefPubMedGoogle Scholar
  23. 23.
    Weinberg RA (1998) One renegade cell: how cancer begins. Basic Books, New YorkGoogle Scholar
  24. 24.
    Sonnenschein C, Soto AM (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211CrossRefPubMedGoogle Scholar
  25. 25.
    Baker SG, Soto AM, Sonnenschein C, Cappuccio A, Potter JD, Kramer BS (2009) Plausibility of stromal initiation of epithelial cancers without a mutation in the epithelium: a computer simulation of morphostats. BMC Cancer 9:89CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wodarz D, Komarova NL (2005) Computational biology of cancer, Lecture notes and mathematical modeling. World Scientific, SingaporeCrossRefGoogle Scholar
  27. 27.
    Nowak MA (2006) Evolutionary dynamics. Exploring the equations of life. The Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  28. 28.
    Britton NF (2003) Essential mathematical biology. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Barrat A, Barthèlemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. 30.
    Giuliani A, Filippi S, Bertolaso M (2014) Why network approach can promote a new way of thinking in biology. Front Genet 5:83CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cherubini C, Filippi S, Gizzi A, Loppini A (2015) Role of topology in complex functional networks of beta cells. Phys Rev E 92(4):042702CrossRefGoogle Scholar
  32. 32.
    Cherubini C, Gizzi A, Bertolaso M, Tambone V, Filippi S (2012) A bistable field model of cancer dynamics. Commun Comput Phys 11(1):1–18CrossRefGoogle Scholar
  33. 33.
    Cherubini C, Filippi S and Gizzi A (2006) Diffusion processes in human brain using COMSOL multiphysics. In: Proceedings of COMSOL Users Conference of Milan, Italy. ISBN: 0-9766792-4-8Google Scholar
  34. 34.
    Crank J (1980) The mathematics of diffusion. Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Jackson PR, Juliano J, Hawkins-Daarud A,ñRockne RC and Swanson KR (2015) Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice. Bull Math Biol 77:846–856Google Scholar
  36. 36.
    Stylianopoulos T (2017) The solid mechanics of cancer and strategies for improved therapy. J Biomech Eng 139(2):1–23CrossRefGoogle Scholar
  37. 37.
    Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Christian Cherubini
    • 1
    • 2
  • Simonetta Filippi
    • 1
    • 2
    Email author
  • Alessandro Loppini
    • 1
  1. 1.Unit of Nonlinear Physics and Mathematical Modeling, Departmental Faculty of EngineeringUniversity Campus Bio-Medico of RomeRomeItaly
  2. 2.International Center for Relativistic Astrophysics—I.C.R.AUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations