Skip to main content

Systems Biology Modeling of Nonlinear Cancer Dynamics

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1702))

Abstract

Systems Biology represents nowadays a promising standard framework for natural and human sciences to attack complicated problems involving Life. Here a particular application of such a program is discussed in the case of Cancer, by using a basic toy model for solid tumor spread for framing together two apparently different conceptual leading paradigms of Oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson DW (1992) On growth and form, revised edition. Dover Publications, New York

    Book  Google Scholar 

  2. Jean RV (1994) Phyllotaxis. A systemic study in plant morphogenesis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Keener J, Sneyd J (1998) Mathematical physiology. Springer, New York

    Google Scholar 

  4. Bini D, Cherubini C, Filippi S, Gizzi A, Ricci PE (2010) On spiral waves arising in natural systems. Commun Comput Phys 8(3):610–622

    Google Scholar 

  5. Winfree AT (2010) The geometry of biological time. Springer, New York

    Google Scholar 

  6. Murray JD (2002) Mathematical biology, vol vols 1 and 2. Springer, New York

    Google Scholar 

  7. Kondepudi D, Prigogine I (2014) Modern thermodynamics: from heat engines to dissipative structures, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  8. Loppini A, Capolupo A, Cherubini C, Gizzi A, Bertolaso M, Filippi S, Vitiello G (2014) On the coherent behavior of pancreatic beta cell clusters. Phys Lett A 378(44):3210–3217

    Article  CAS  Google Scholar 

  9. Bertolaso M, Capolupo A, Cherubini C, Filippi S, Gizzi A, Loppini A, Vitiello G (2015) The role of coherence in emergent behavior of biological systems. Electromag Biol Med 34(2):138–140

    Article  Google Scholar 

  10. Saaty TL (2011) Modern nonlinear equations. Dover Publications, New York

    Google Scholar 

  11. Saaty TL (2010) Nonlinear mathematics. Dover Publications, New York

    Google Scholar 

  12. Cherubini C, Filippi S (2009) Lagrangian field theory of reaction-diffusion. Phys Rev E 80(4):046117

    Article  CAS  Google Scholar 

  13. Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72

    Article  Google Scholar 

  14. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nowak MA, May RM (2000) Virus dynamics. Mathematical principles of immunology and virology. Oxford University Press, Oxford

    Google Scholar 

  16. Noble D (2008) The music of life: biology beyond genes, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  17. Proctor RN (2000) The Nazi war on cancer. Princeton University Press, Princeton, NJ

    Google Scholar 

  18. Werner HMJ, Mills GB, Ram PT (2014) Cancer systems biology: a peek into the future of patient care? Nat Rev Clin Oncol 11:167–176

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abbas AK, Lichtman AHH, Pillai S (2017) Cellular and molecular immunology, 9th edn. Elsevier, Philadelphia, PA

    Google Scholar 

  20. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26:1097–1107

    Article  CAS  PubMed  Google Scholar 

  21. Sonnenschein C, Soto AM (2008) Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol 18:372–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potter JD (2007) Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7:464–474

    Article  CAS  PubMed  Google Scholar 

  23. Weinberg RA (1998) One renegade cell: how cancer begins. Basic Books, New York

    Google Scholar 

  24. Sonnenschein C, Soto AM (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211

    Article  CAS  PubMed  Google Scholar 

  25. Baker SG, Soto AM, Sonnenschein C, Cappuccio A, Potter JD, Kramer BS (2009) Plausibility of stromal initiation of epithelial cancers without a mutation in the epithelium: a computer simulation of morphostats. BMC Cancer 9:89

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wodarz D, Komarova NL (2005) Computational biology of cancer, Lecture notes and mathematical modeling. World Scientific, Singapore

    Book  Google Scholar 

  27. Nowak MA (2006) Evolutionary dynamics. Exploring the equations of life. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  28. Britton NF (2003) Essential mathematical biology. Springer, New York

    Book  Google Scholar 

  29. Barrat A, Barthèlemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Giuliani A, Filippi S, Bertolaso M (2014) Why network approach can promote a new way of thinking in biology. Front Genet 5:83

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cherubini C, Filippi S, Gizzi A, Loppini A (2015) Role of topology in complex functional networks of beta cells. Phys Rev E 92(4):042702

    Article  Google Scholar 

  32. Cherubini C, Gizzi A, Bertolaso M, Tambone V, Filippi S (2012) A bistable field model of cancer dynamics. Commun Comput Phys 11(1):1–18

    Article  Google Scholar 

  33. Cherubini C, Filippi S and Gizzi A (2006) Diffusion processes in human brain using COMSOL multiphysics. In: Proceedings of COMSOL Users Conference of Milan, Italy. ISBN: 0-9766792-4-8

    Google Scholar 

  34. Crank J (1980) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  35. Jackson PR, Juliano J, Hawkins-Daarud A,ñRockne RC and Swanson KR (2015) Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice. Bull Math Biol 77:846–856

    Google Scholar 

  36. Stylianopoulos T (2017) The solid mechanics of cancer and strategies for improved therapy. J Biomech Eng 139(2):1–23

    Article  Google Scholar 

  37. Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Filippi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cherubini, C., Filippi, S., Loppini, A. (2018). Systems Biology Modeling of Nonlinear Cancer Dynamics. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 1702. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7456-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7456-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7455-9

  • Online ISBN: 978-1-4939-7456-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics