Skip to main content

Application of Polyamines to Maintain Functional Properties in Stored Fruits

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

Polyamines are natural compounds involved in many growth and developmental processes with ubiquitous presence in all cells. Research in fruits has been developed to get a better understanding of the role of polyamines, both endogenous and exogenous, especially during the ripening and senescence processes. However, in recent years and given the relationship between fruit consumption and human health, the study of antioxidant compounds responsible for these beneficial effects is of increasing interest.

This chapter focuses on the role of polyamines on the content of bioactive compounds with antioxidant activity as well as in the activities of the main antioxidant enzymes in fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bachrach U (2010) The early history of polyamine research. Plant Physiol Biochem 48:490–495

    Article  CAS  PubMed  Google Scholar 

  2. Rosenheim O (1924) The isolation of spermine phosphate from semen and testis. Biochem J 18:1253–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith TA (1971) The occurrence, metabolism and functions of amines in plants. Biol Rev Camb Philos Soc 46:201–204

    Article  CAS  PubMed  Google Scholar 

  4. Alburquerque N, Egea J, Burgos L, Martínez-Romero D, Valero D, Serrano M (2006) The influence of polyamines on apricot ovary development and fruit set. Ann Appl Biol 149:27–33

    Article  CAS  Google Scholar 

  5. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  CAS  PubMed  Google Scholar 

  6. Valero D, Serrano M (2010) Postharvest biology and technology for preserving fruit quality. CRC/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  7. Asadi R, Ardebili ZO, Abdossi V (2013) The modified fruit quality by application of different kinds of polyamines in apricot tree (Prunus armeniaca). J Appl Environ Biol Sci 3:28–31

    Google Scholar 

  8. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  Google Scholar 

  9. Valero D, Martínez-Romero D, Serrano M (2002) The role of polyamines in the improvement of the shelf life of fruit. Trends Food Sci Technol 13:228–234

    Article  CAS  Google Scholar 

  10. Serrano M, Zapata PJ, Martínez-Romero D, Díaz-Mula H, Valero D (2016) Polyamines as an eco-friendly postharvest tool to maintain fruit quality. In: Siddiqui MW (ed) Eco-friendly technology for postharvest produce quality. Elsevier Inc., London, UK

    Google Scholar 

  11. Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46

    Article  CAS  PubMed  Google Scholar 

  12. Nile SH, Park SW (2014) Edible berries: bioactive components and their effect on human health. Nutrition 30:134–144

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez-Casado A (2016) The health potential of fruits and vegetables phytochemicals: notable examples. Crit Rev Food Sci Nutr 56:1097–1107

    Article  CAS  PubMed  Google Scholar 

  14. Grosso G, Galvano F, Mistretta A, Marventano S, Nolfo F, Calabrese G, Buscemi S, Drago F, Veronesi U, Scuderi A (2013) Red orange: experimental models and epidemiological evidence of its benefits on human health. Oxid Med Cell Longev. Article ID 157240. doi:10.1155/2013/157240

    Google Scholar 

  15. Sharma P (2013) Vitamin C rich fruits can prevent heart disease. Ind J Clin Biochem 28:213–214

    Article  Google Scholar 

  16. Valero D, Serrano M (2013) Growth and ripening stage at harvest modulates postharvest quality and bioactive compounds with antioxidant activity. Stewart Postharvest Rev 3:5

    Google Scholar 

  17. Woodside JV, McGrath AJ, Lyner N, McKinley MC (2015) Carotenoids and health in older people. Maturitas 80:63–68

    Article  CAS  PubMed  Google Scholar 

  18. Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D (2015) Atheroprotective effects of (poly) phenols: a focus on cell cholesterol metabolism. Food Funct 6:13–31

    Article  CAS  PubMed  Google Scholar 

  19. Ali MA, Poortvliet E, Strömberg R, Yngve A (2011) Polyamines in foods: development of a food databse. Food Nutr Res 55:5572. doi:10.3402/fnr.v55i05572

    Article  Google Scholar 

  20. Hunter DC, Burritt DJ (2012) Polyamines of plant origin – an important dietary consideration for human health. In: Rao V (ed) Phytochemical as nutraceuticals – global approaches to their role in nutrition and health. Chapter 12. InTech, Croatia. doi:10.5772/2375

    Chapter  Google Scholar 

  21. Kalač P (2014) Health effects and occurrence of dietary polyamines: a review for the period 2005-mid 2013. Food Chem 161:27–39

    Article  CAS  PubMed  Google Scholar 

  22. Malik AU, Singh Z (2006) Improved fruit retention, yield and fruit quality in mango with exogenous application of polyamines. Sci Hortic 110:167–174

    Article  CAS  Google Scholar 

  23. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2012) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  CAS  Google Scholar 

  24. Madhulatha P, Gupta A, Gupta S, Kumar A, Pal RK, Rajam MV (2014) Fruit-specific overexpression of human S-adenosylmethionine decarboxylase gene results in polyamine accumulation and affects diverse aspects of tomato fruit development and quality. J Plant Biochem Biotechnol 23:151–160

    Article  CAS  Google Scholar 

  25. Pandey R, Gupta A, Chowdhary A, Pal RK, Rajam MV (2015) Overexpression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. Plant Mol Biol 87:249–260

    Article  CAS  PubMed  Google Scholar 

  26. Friedman M (2013) Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J Agric Food Chem 61:9534–9550

    Article  CAS  PubMed  Google Scholar 

  27. Khan AS, Singh Z, Abbasi NA, Swinny EE (2008) Pre- or post-harvest applications of putrescine at low temperature storage affect fruit ripening and quality of ‘Angelino’ plum. J Sci Food Agric 88:1686–1695

    Article  CAS  Google Scholar 

  28. Serrano M, Díaz-Mula HM, Valero D (2011) Antioxidant compounds in fruits and vegetables and changes during postharvest storage and processing. Stewart Postharv Rev 1:1

    Google Scholar 

  29. Harindra Champa WA, Gill MIS, Mahajan BVC, Bedi S (2015) Exogenous treatment of spermine to maintain quality and extend postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless under low temperature storage. LWT Food Sci Technol 60:412–419

    Article  CAS  Google Scholar 

  30. Shiri MA, Ghasemnezhad M, Bakshi D, Sarikhani H (2013) Effect of postharvest putrescine application and chitosan coating on maintaining quality of table grape cv. ‘Shahroudi’ during long-term storage. J Food Proc Preserv 37:999–1007

    Article  CAS  Google Scholar 

  31. Mirdehghan SH, Rahimi S (2016) Pre-harvest application of polyamines enhances antioxidants and table grape (Vitis vinifera L.) quality during postharvest period. Food Chem 196:1040–1047

    Article  CAS  PubMed  Google Scholar 

  32. Razzaq K, Khan AS, Malik AU, Shahid M, Ullah S (2014) Role of putrescine in regulating fruit softening and antioxidative enzymes systems in ‘Samar Bahisht Chaunsa’ mango. Postharvest Biol Technol 96:23–32

    Article  CAS  Google Scholar 

  33. Jhalegar MJ, Sharma RR, Pal RK, Rana V (2012) Effect of postharvest treatments with polyamines on physiological and biochemical attributes of kiwifruit (Actinidia deliciosa) cv. Allison Fruits 67:13–22

    Article  CAS  Google Scholar 

  34. Mirdehghan SH, Rahemi M, Serrano M, Guillén F, Martínez-Romero D, Valero D (2007) The application of polyamines by pressure or immersion as a tool to maintain functional properties in stored pomegranates arils. J Agric Food Chem 55:755–760

    Article  CAS  PubMed  Google Scholar 

  35. Koushesh sab M, Arzani K, Barzegar M (2012) Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. J Agric Food Chem 60:8947–8953

    Article  CAS  Google Scholar 

  36. Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal A (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  CAS  Google Scholar 

  37. Barman K, Asrey R, Pal RK, Kaur C, Jha SK (2014) Influence of putrescine and carnauba wax on functional and sensory quality of pomegranate (Punica granatum L.) fruits during storage. J Food Sci Technol 51:111–117

    Article  CAS  PubMed  Google Scholar 

  38. Lester GE (2000) Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Sci 160:105–112

    Article  CAS  PubMed  Google Scholar 

  39. Asensi-Fabado MA, Munné-Bosh S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    Article  CAS  PubMed  Google Scholar 

  40. Javanmardi J, Rahemi M, Nasirzadeh M (2013) Post-storage quality and physiological responses of tomato fruits treated with polyamines. Adv Hort Sci 27:173–181

    Google Scholar 

  41. Ramezanian A, Rahemi M, Maftoun M, Bahman K, Eshghi S, Safizadeh MR (2010) The ameliorative effects of spermidine and calcium chloride on chilling injury in pomegranate fruits after long-term storage. Fruits 65:169–176

    Article  CAS  Google Scholar 

  42. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  43. Mozdzan M, Szemra J, Rysz J, Stolarek RA, Nowak D (2006) Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int J Biochem Cell Biol 38:69–81

    Article  CAS  PubMed  Google Scholar 

  44. Tareen MJ, Abbasi NA, Hafiz IA (2012) Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. 'Flordaking' fruit during storage. Sci Hortic 142:221–228

    Article  CAS  Google Scholar 

  45. Zhang X, Shen L, Li F, Zhang Y, Meng D, Sheng J (2010) Up-regulating arginase contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits. J Sci Food Agric 90:2195–2202

    Article  CAS  PubMed  Google Scholar 

  46. Sánchez-Rodríguez E, Romero L, Ruíz JM (2016) Accumulation of free polyamines enhances antioxidant responses in fruits of grafted tomato plants under water stress. J Plant Physiol 190:72–76

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Valero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Serrano, M., Valero, D. (2018). Application of Polyamines to Maintain Functional Properties in Stored Fruits. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_37

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics