Skip to main content

Abiotic Stress Phenotyping of Polyamine Mutants

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

Plant mutants in polyamine pathway genes are ideal for investigating their roles in stress responses. Here we describe easy-to-perform methods for phenotyping Arabidopsis mutants under abiotic stress. These include measurements of root growth, chlorophyll content, water loss, electrolyte leakage, and content of the reactive oxygen species hydrogen peroxide (H2O2) and superoxide anion (O2−). Growth of Arabidopsis seedlings is described that enables transfer to different media for stress treatment without damaging roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, delRio LA (2013) Role of peroxisomes as a source of reactive oxygenspecies (ROS) signalling molecules. Subcell Biochem 69:231–255

    Article  CAS  PubMed  Google Scholar 

  3. Gupta DK, Palma JM, Corpas FJ (eds) (2015) Reactive oxygen species and oxidative damage in plants under stress. Springer. ISBN: 978-3-319-20421-5

    Google Scholar 

  4. Swanson S, Gilroy S (2010) ROS in plant development. Physiol Plant 138:384–392

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  6. Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090

    Article  CAS  PubMed  Google Scholar 

  7. Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM (2016) Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Front Plant Sci 7:1299

    PubMed  PubMed Central  Google Scholar 

  8. Braun A (1873) Freunde z Berlin, p 75

    Google Scholar 

  9. Laibach F (1907) Zur Frage nach der Individualität der Chromosomen im Pflanzenreich. Bot Centbl Beihefte (I) 22:191–210

    Google Scholar 

  10. Laibach F (1943) Arabidopsis thaliana (L.) Henh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Bot Archiv 44:439–455

    Google Scholar 

  11. Reinholz E (1947) Auslösung von Röntgenmutationen bei Arabidopsis thaliana (L.) Heynh. und ihre Bedeutung für die Pflanzenzüchtung und Evolutionstheorie. Field Inform Agency Tech Rep 1006:1–170

    Google Scholar 

  12. Meyerowitz EM (2001) Prehistory and history of Arabidopsis research. Plant Physiol 125:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889

    Article  CAS  PubMed  Google Scholar 

  14. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921

    Article  CAS  PubMed  Google Scholar 

  15. Krämer U (2015) The natural history of a model organism: planting molecular functions in an ecological context with Arabidopsis thaliana. eLife 4:e06100

    Article  PubMed Central  Google Scholar 

  16. Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564

    Article  CAS  PubMed  Google Scholar 

  17. Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16:446–456

    Article  CAS  PubMed  Google Scholar 

  18. Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152

    Article  CAS  PubMed  Google Scholar 

  20. Hanzawa Y, Takahashi T, Komeda Y (1997) ACL5: an Arabidopsis gene required for internodal elongation after flowering. Plant J 12:863–874

    Article  CAS  PubMed  Google Scholar 

  21. Tavladoraki P, Cona A, Angelini R (2016) Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci 7:824

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wimalasekera R, Villar C, Begum T, Scherer GFE (2011) Copper amine oxidase1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678

    Article  CAS  PubMed  Google Scholar 

  23. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigment of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  24. Weigel D, Glazebrook J (2002) Arabidopsis, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  25. Barr HD, Weatherley PE (1962) A reexamination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  26. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sukumaran NP, Weiser CJ (1972) An excised leaflet test for evaluating potato frost tolerance. Hort Sci 7:467–468

    Google Scholar 

  28. Vainola A, Repo T (2000) Impedance spectroscopy in frost hardiness evaluation of Rhododendron leaves. Ann Bot 86:799–805

    Article  Google Scholar 

  29. Takagi T, Nakamura M, Hayashi H, Inatsugi R, Yano R, Nishida I (2003) The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1. Plant Cell Physiol 44:922–931

    Article  CAS  PubMed  Google Scholar 

  30. Ismail AM, Hall AE (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cow-pea. Crop Sci 39:1762–1768

    Article  Google Scholar 

  31. Sreenivasulu N, Grimm B, Wobus U, Weshke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  32. De B, Mukherjee AK (1996) Mercuric chloride induced membrane damage in tomato cultured cells. Biol Plant 38:469–473

    Article  CAS  Google Scholar 

  33. Messner B, Boll M (1994) Cell suspension cultures of spruce (Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide (oxidative burst). Plant Cell Tissue Organ Cult 39:69–78

    Article  CAS  Google Scholar 

  34. Doke N (1983) Generation of superoxide anion by potato tuber protoplasts during hypersensitive response to hyphal wall components of Phytophtora infestans and specific inhibition of the reaction with supressors of hypersensitivity. Physiol Plant Pathol 23:359–367

    Article  CAS  Google Scholar 

  35. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Google Scholar 

  36. Lorenzen CJ (1965) A note on the chlorophyll and phaeophytin content of the chlorophyll maximum. Limnol Oceanogr 10:482–483

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by JSPS KAKENHI (No. 15K14705) to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Berberich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Berberich, T., Sagor, G.H.M., Kusano, T. (2018). Abiotic Stress Phenotyping of Polyamine Mutants. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics