Skip to main content

Determination of Protein ps-ns Motions by High-Resolution Relaxometry

  • Protocol
  • First Online:
Protein NMR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1688))

Abstract

Many of the functions of biomacromolecules can be rationalized by the characterization of their conformational energy landscapes: the structures of the dominant states, transitions between states and motions within states. Nuclear magnetic resonance (NMR) spectroscopy is the technique of choice to study internal motions in proteins. The determination of motions on picosecond to nanosecond timescales requires the measurement of nuclear spin relaxation rates at multiple magnetic fields. High sensitivity and resolution are obtained only at high magnetic fields, so that, until recently, site-specific relaxation rates in biomolecules were only measured over a narrow range of high magnetic fields. This limitation was particularly striking for the quantification of motions on nanosecond timescales, close to the correlation time for overall rotational diffusion. High-resolution relaxometry is an emerging technique to investigate picosecond—nanosecond motions of proteins. This approach uses a high-field NMR spectrometer equipped with a sample shuttle device, which allows for the measurement of the relaxation rate constants at low magnetic fields, while preserving the sensitivity and resolution of a high-field NMR spectrometer. The combined analysis of high-resolution relaxometry and standard high-field relaxation data provides a more accurate description of the dynamics of proteins, in particular in the nanosecond range. The purpose of this chapter is to describe how to perform high-resolution relaxometry experiments and how to analyze the rates measured with this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charlier C, Cousin SF, Ferrage F (2016) Protein dynamics from nuclear magnetic relaxation. Chem Soc Rev 45:2410–2422. doi:10.1039/c5cs00832h

    Article  CAS  PubMed  Google Scholar 

  2. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N-inverse detected heteronuclear NMR-spectroscopy - application to staphylococcal nuclease. Biochemistry 28:8972–8979

    Article  CAS  PubMed  Google Scholar 

  3. Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104(8):3623–3640

    Article  CAS  PubMed  Google Scholar 

  4. Peng JW, Wagner G (1992) Mapping of spectral density-functions using heteronuclear NMR relaxation measurements. J Magn Reson 98(2):308–332

    CAS  Google Scholar 

  5. Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  CAS  Google Scholar 

  6. Agarwal V, Xue Y, Reif B, Skrynnikov NR (2008) Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed. J Am Chem Soc 130(49):16611–16621. doi:10.1021/ja804275p

    Article  CAS  PubMed  Google Scholar 

  7. Duchardt E, Schwalbe H (2005) Residue specific ribose and nucleobase dynamics of the cUUCGg RNA tetraloop motif by NMR 13C relaxation. J Biomol NMR 32(4):295–308. doi:10.1007/s10858-005-0659-x

    Article  CAS  PubMed  Google Scholar 

  8. Ferrage F, Pelupessy P, Cowburn D, Bodenhausen G (2006) Protein backbone dynamics through 13C'-13Cα cross-relaxation in NMR spectroscopy. J Am Chem Soc 128(34):11072–11078. doi:10.1021/ja0600577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rinnenthal J, Richter C, Nozinovic S, Furtig B, Lopez JJ, Glaubitz C, Schwalbe H (2009) RNA phosphodiester backbone dynamics of a perdeuterated cUUCGg tetraloop RNA from phosphorus-31 NMR relaxation analysis. J Biomol NMR 45(1-2):143–155. doi:10.1007/s10858-009-9343-x

    Article  CAS  PubMed  Google Scholar 

  10. Muhandiram DR, Yamazaki T, Sykes BD, Kay LE (1995) Measurement of 2H T relaxation times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J Am Chem Soc 117:11536–11544

    Article  CAS  Google Scholar 

  11. Lee AL, Flynn PF, Wand AJ (1999) Comparison of 2H and 13C NMR relaxation techniques for the study of protein methyl group dynamics in solution. J Am Chem Soc 121(12):2891–2902. doi:10.1021/ja983758f

    Article  CAS  Google Scholar 

  12. Millet O, Muhandiram DR, Skrynnikov NR, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labeled and fractionally 2H-enriched proteins in solution. J Am Chem Soc 124:6439–6448

    Article  CAS  PubMed  Google Scholar 

  13. Skrynnikov NR, Millet O, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions. J Am Chem Soc 124(22):6449–6460. doi:10.1021/ja012498q

    Article  CAS  PubMed  Google Scholar 

  14. Sheppard D, Li D-W, Brueschweiler R, Tugarinov V (2009) Deuterium spin probes of backbone order in proteins: 2H NMR relaxation study of deuterated carbon alpha sites. J Am Chem Soc 131(43):15853–15865. doi:10.1021/ja9063958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liao X, Long D, Li D-W, Brueschweiler R, Tugarinov V (2012) Probing side-chain dynamics in proteins by the measurement of nine deuterium relaxation rates per methyl group. J Phys Chem B 116(1):606–620. doi:10.1021/jp209304c

    Article  CAS  PubMed  Google Scholar 

  16. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of magnetic resonance in one and two dimensions. Clarendon Press, Oxford

    Google Scholar 

  17. Kumar A, Grace RCR, Madhu PK (2000) Cross-correlations in NMR. Prog NMR Spectrosc 37(3):191–319

    Article  CAS  Google Scholar 

  18. Goldman M (2001) Formal theory of spin-lattice relaxation. J Magn Reson 149:160–187

    Article  CAS  PubMed  Google Scholar 

  19. Nicholas MP, Eryilmaz E, Ferrage F, Cowburn D, Ghose R (2010) Nuclear spin relaxation in isotropic and anisotropic media. Prog Nucl Magn Reson Spectrosc 57:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Redfield AG (2003) Shuttling device for high-resolution measurements of relaxation and related phenomena in solution at low field, using a shared commercial 500 MHz NMR instrument. Magn Reson Chem 41(10):753–768. doi:10.1002/mrc.1264

    Article  CAS  Google Scholar 

  21. Redfield AG (2012) High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument. J Biomol NMR 52(2):159–177. doi:10.1007/s10858-011-9594-1

    Article  CAS  PubMed  Google Scholar 

  22. Chou CY, Chu ML, Chang CF, Huang TH (2012) A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR. J Magn Reson 214:302–308. doi:10.1016/j.jmr.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  23. Charlier C, Khan SN, Marquardsen T, Pelupessy P, Reiss V, Sakellariou D, Bodenhausen G, Engelke F, Ferrage F (2013) Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry. J Am Chem Soc 135(49):18665–18672. doi:10.1021/ja409820g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldman M (1988) Quantum description of high resolution NMR in liquids. Clarendon Press, Oxford

    Google Scholar 

  25. Abragam A (1961) Principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  26. Redfield AG (1965) Theory of relaxation processes. Adv Magn Reson 1:1–32

    Article  Google Scholar 

  27. Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ (2006) Protein NMR spectroscopy: principles and practice. Academic Press, San Diego, CA

    Google Scholar 

  28. Khan SN, Charlier C, Augustyniak R, Salvi N, Déjean V, Bodenhausen G, Lequin O, Pelupessy P, Ferrage F (2015) Distribution of pico- and nanosecond motions in disordered proteins from nuclear spin relaxation: a simple array of correlation times. Biophys J 109:988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brüschweiler R, Wright PE (1994) NMR order parameters of biomolecules - a new analytical representation and application to the gaussian axial fluctuation model. J Am Chem Soc 116:8426–8427

    Article  Google Scholar 

  30. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  31. Polimeno A, Freed JH (1995) Slow motional ESR in complex fluids - the slowly relaxing local-structure model of solvent cage effects. J Phys Chem 99(27):10995–11006. doi:10.1021/j100027a047

    Article  CAS  Google Scholar 

  32. Meirovitch E, Shapiro YE, Polimeno A, Freed JH (2006) Protein dynamics from NMR: the slowly relaxing local structure analysis compared with model-free analysis. J Phys Chem A 110(27):8366–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buevich AV, Baum J (1999) Dynamics of unfolded proteins: incorporation of distributions of correlation times in the model free analysis of NMR relaxation data. J Am Chem Soc 121(37):8671–8672

    Article  CAS  Google Scholar 

  34. Buevich AV, Shinde UP, Inouye M, Baum J (2001) Backbone dynamics of the natively unfolded pro-peptide of subtilisin by heteronuclear NMR relaxation studies. J Biomol NMR 20(3):233–249. doi:10.1023/a:1011243116136

    Article  CAS  PubMed  Google Scholar 

  35. Ochsenbein F, Neumann JM, Guittet E, Van Heijenoort C (2002) Dynamical characterization of residual and non-native structures in a partially folded protein by 15N NMR relaxation using a model based on a distribution of correlation times. Protein Sci 11(4):957–964. doi:10.1110/ps.4000102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abyzov A, Salvi N, Schneider R, Maurin D, Ruigrok RWH, Jensen MR, Blackledge M (2016) Identification of dynamic modes in an intrinsically disordered protein using temperature-dependent NMR relaxation. J Am Chem Soc 138(19):6240–6251. doi:10.1021/jacs.6b02424

    Article  CAS  PubMed  Google Scholar 

  37. Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple 2-parameter model-free approach to the interpretation of Nitrogen-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112(12):4989–4991

    Article  CAS  Google Scholar 

  38. Mandel AM, Akke M, Palmer AG III (1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 246:144–163

    Article  CAS  PubMed  Google Scholar 

  39. Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16(1):23–28

    Article  CAS  PubMed  Google Scholar 

  40. Berlin K, Castaneda CA, Schneidman-Duhovny D, Sali A, Nava-Tudela A, Fushman D (2013) Recovering a representative conformational ensemble from underdetermined macromolecular structural data. J Am Chem Soc 135(44):16595–16609. doi:10.1021/ja4083717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. d’Auvergne EJ, Gooley PR (2008) Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J Biomol NMR 40(2):107–119. doi:10.1007/s10858-007-9214-2

    Article  PubMed  Google Scholar 

  42. d’Auvergne EJ, Gooley PR (2008) Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J Biomol NMR 40(2):121–133. doi:10.1007/s10858-007-9213-3

    Article  PubMed  Google Scholar 

  43. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferrage F, Piserchio A, Cowburn D, Ghose R (2008) On the measurement of 15N-{1H} nuclear overhauser effects. J Magn Reson 192(2):302–313. doi:10.1016/j.jmr.2008.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ammann C, Meier P, Merbach AE (1982) A simple multi-nuclear NMR thermometer. J Magn Reson 46(2):319–321. doi:10.1016/0022-2364(82)90147-0

    CAS  Google Scholar 

  46. Lacey ME, Webb AG, Sweedler JV (2002) On-line temperature-monitoring in a capillary electrochromatograph frit using microcoil NMR. Anal Chem 74(17):4583–4587. doi:10.1021/ac025741s

    Article  CAS  PubMed  Google Scholar 

  47. Berger S, Braun S (2004) 200 and more NMR experiments: a practical course. Wiley-VCH, Weinheim

    Google Scholar 

  48. Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45(2):175–178. doi:10.1002/mrc.1941

    Article  CAS  PubMed  Google Scholar 

  49. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  50. Fushman D, Varadan R, Assfalg M, Walker O (2004) Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements. Prog Nucl Magn Reson Spectrosc 44(3-4):189–214. doi:10.1016/j.pnmrs.2004.02.001

    Article  CAS  Google Scholar 

  51. Ferrage F (2012) Protein dynamics by 15N nuclear magnetic relaxation. Meth Mol Biol 831:141–163

    Article  CAS  Google Scholar 

  52. Lakomek NA, Carlomagno T, Becker S, Griesinger C, Meiler J (2006) A thorough dynamic interpretation of residual dipolar couplings in ubiquitin. J Biomol NMR 34(2):101–115

    Article  CAS  PubMed  Google Scholar 

  53. Lakomek NA, Walter KFA, Fares C, Lange OF, de Groot BL, Grubmuller H, Bruschweiler R, Munk A, Becker S, Meiler J, Griesinger C (2008) Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics. J Biomol NMR 41(3):139–155. doi:10.1007/s10858-008-9244-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salmon L, Bouvignies G, Markwick P, Lakomek N, Showalter S, Li DW, Walter K, Griesinger C, Bruschweiler R, Blackledge M (2009) Protein conformational flexibility from structure-free analysis of NMR dipolar couplings: quantitative and absolute determination of backbone motion in ubiquitin. Angew Chem Int Ed Engl 48(23):4154–4157. doi:10.1002/anie.200900476

    Article  CAS  PubMed  Google Scholar 

  55. Salmon L, Bouvignies G, Markwick P, Blackledge M (2011) Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales. Biochemistry 50(14):2735–2747. doi:10.1021/bi200177v

    Article  CAS  PubMed  Google Scholar 

  56. Loth K, Pelupessy P, Bodenhausen G (2005) Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. J Am Chem Soc 127(16):6062–6068

    Google Scholar 

Download references

Acknowledgments

This work was funded by the European Research Council (ERC) under the European Community Seventh Framework Program (FP7/2007–2013), ERC Grant Agreement 279519 (2F4BIODYN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Ferrage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cousin, S.F., Kadeřávek, P., Bolik-Coulon, N., Ferrage, F. (2018). Determination of Protein ps-ns Motions by High-Resolution Relaxometry. In: Ghose, R. (eds) Protein NMR. Methods in Molecular Biology, vol 1688. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7386-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7386-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7385-9

  • Online ISBN: 978-1-4939-7386-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics