Skip to main content

In Vitro Models of Cutaneous Inflammation

  • Protocol
  • First Online:
Borrelia burgdorferi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1690))

Abstract

The skin plays an essential role in the transmission of Lyme borreliosis since it is the first interface between the Ixodes tick and the host during the inoculation of Borrelia burgdorferi sensu lato. A better understanding of the inflammatory reaction at this location is key to develop better strategies (e.g., vaccine and diagnosis) to fight this disease. In vitro cell culture of resident skin cells might constitute an approach to decipher the complex interplay between the tick, the pathogen, and the vertebrate host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nestle FO, Di Meglio P, Qin JZ et al (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Frischknecht F (2007) The skin as interface in the transmission of arthropod-borne pathogens. Cell Microbiol 9:1630–1640

    Article  CAS  PubMed  Google Scholar 

  3. Bernard Q, Jaulhac B, Boulanger N (2014) Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin. J Invest Dermatol 134:1211–1219

    Article  CAS  PubMed  Google Scholar 

  4. Bernard Q, Jaulhac B, Boulanger N (2015) Skin and arthropods: an effective interaction used by pathogens in vector-borne diseases. Eur J Dermatol 25(Suppl 1):18–22

    CAS  PubMed  Google Scholar 

  5. Sonenshine DE, Anderson JM (2014) Mouthparts and digestive system. In: Sonenshine RM, Daniel E, Roe M (eds) Biology of ticks. Oxford University Press, New York, pp 122–162

    Google Scholar 

  6. Grimm D, Tilly K, Byram R et al (2004) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. PNAS 101:3142–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marchal CMP, Luft BJ, Yang X et al (2009) Defensin is suppressed by tick salivary gland extract during the in vitro interaction of resident skin cells with Borrelia burgdorferi. J Invest Dermatol 129:2515–2517

    Article  CAS  PubMed  Google Scholar 

  8. Marchal C, Schramm F, Kern A et al (2011) Antialarmin effect of tick saliva during the transmission of Lyme disease. Infect Immun 79:774–785

    Article  CAS  PubMed  Google Scholar 

  9. Schramm F, Kern A, Barthel C et al (2012) Microarray analyses of inflammation response of human dermal fibroblasts to different strains of Borrelia burgdorferi sensu stricto. PLoS One 7:e40046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andrei G, van den Oord J, Fiten P et al (2005) Organotypic epithelial raft cultures as a model for evaluating compounds against alphaherpesviruses. Antimicrob Agents Chemother 49:4671–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pasparakis M, Haase I, Nestle O (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14:289–301

    Article  CAS  PubMed  Google Scholar 

  12. Stanek G, Wormser G, Gray J et al (2012) Lyme borreliosis. Lancet 379:461–473

    Article  PubMed  Google Scholar 

  13. Kazimírová M, Štibrániová I (2013) Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim TK, Tirloni L, Pinto AFM et al (2016) Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl Trop Dis 10:e0004323

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim D, Šimo L, Park Y (2014) Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis. J Exp Biol 217:3656–3663

    Article  PubMed  PubMed Central  Google Scholar 

  16. Valenzuela JG, Charlab R, Mather TN et al (2000) Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J Biol Chem 275:18717–18723

    Article  CAS  PubMed  Google Scholar 

  17. Patton TG, Dietrich G, Brandt K et al (2012) Saliva, salivary gland, and hemolymph collection from Ixodes scapularis ticks. J Vis Exp 60

    Google Scholar 

  18. Mehlhorn H (2001) Encyclopedic reference of parasitology. Dis Treat Ther 1:678

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Boulanger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bernard, Q., Jaulhac, B., Boulanger, N. (2018). In Vitro Models of Cutaneous Inflammation. In: Pal, U., Buyuktanir, O. (eds) Borrelia burgdorferi. Methods in Molecular Biology, vol 1690. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7383-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7383-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7382-8

  • Online ISBN: 978-1-4939-7383-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics