Skip to main content

Identification of Acetylated Proteins in Borrelia burgdorferi

  • Protocol
  • First Online:
Borrelia burgdorferi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1690))

Abstract

Posttranslational modification (PTM) of proteins has emerged as a major regulatory mechanism in all three domains of life. One emerging PTM is Nε-lysine acetylation—the acetylation of the epsilon amino group of lysine residues. Nε-lysine acetylation is known to regulate multiple cellular processes. In eukaryotes, it regulates chromatin structure, transcription, metabolism, signal transduction, and the cytoskeleton. Recently, multiple groups have detected Nε-lysine acetylation in diverse bacterial phyla, but no work on protein acetylation in Borrelia burgdorferi has been reported. Here, we describe a step-by-step protocol to identify Nε-lysine acetylated proteins in B. burgdorferi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    Article  CAS  PubMed  Google Scholar 

  2. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 110:6601–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang XJ, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264

    Article  CAS  PubMed  Google Scholar 

  5. Kim D, Yu BJ, Kim JA, Lee YJ, Choi SG, Kang S, Pan JG (2013) The acetylproteome of gram-positive model bacterium Bacillus subtilis. Proteomics 13:1726–1736

    Article  CAS  PubMed  Google Scholar 

  6. Lee DW, Kim D, Lee YJ, Kim JA, Choi JY, Kang S, Pan JG (2013) Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus. Proteomics 13:2278–2282

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weinert BT, Iesmantavicius V, Wagner SA, Scholz C, Gummesson B, Beli P, Nystrom T, Choudhary C (2013) Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 51:265–272

    Article  CAS  PubMed  Google Scholar 

  9. Wu X, Vellaichamy A, Wang D, Zamdborg L, Kelleher NL, Huber SC, Zhao Y (2013) Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics. J Proteome 79:60–71

    Article  CAS  Google Scholar 

  10. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang K, Zheng S, Yang JS, Chen Y, Cheng Z (2013) Comprehensive profiling of protein lysine acetylation in Escherichia coli. J Proteome Res 12:844–851

    Article  CAS  PubMed  Google Scholar 

  12. Kuhn ML, Zemaitaitis B, Hu LI, Sahu A, Sorensen D, Minasov G, Lima BP, Scholle M, Mrksich M, Anderson WF, Gibson BW, Schilling B, Wolfe AJ (2014) Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One 9:e94816. doi:10.1371/journal.pone.0094816. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu B, Kim J, Moon J, Ryu S, Pan J (2008) The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol 18:1529–1536

    CAS  PubMed  Google Scholar 

  14. Baeza J, Dowell JA, Smallegan MJ, Fan J, Amador-Noguez D, Khan Z, Denu JM (2014) Stoichiometry of site-specific lysine acetylation in an entire proteome. J Biol Chem 289:21326–21338

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kosono S, Tamura M, Suzuki S, Kawamura Y, Yoshida A, Nishiyama M, Yoshida M (2015) Changes in the acetylome and Succinylome of Bacillus subtilis in response to carbon source. PLoS One 10:e0131169. doi:10.1371/journal.pone.0131169. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu LI, Lima BP, Wolfe AJ (2010) Bacterial protein acetylation: the dawning of a new age. Mol Microbiol 77:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones JD, O'Connor CD (2011) Protein acetylation in prokaryotes. Proteomics 11:3012–3022

    Article  CAS  PubMed  Google Scholar 

  18. Kim GW, Yang XJ (2011) Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem Sci 36:211–220

    Article  CAS  PubMed  Google Scholar 

  19. Soppa J (2010) Protein acetylation in archaea, bacteria, and eukaryotes. Archaea. doi:10.1155/2010/820681

  20. Thao S, Escalante-Semerena JC (2011) Control of protein function by reversible N[epsilon]-lysine acetylation in bacteria. Curr Opin Microbiol 14:200–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hentchel KL, Escalante-Semerena JC (2015) Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol Mol Biol Rev 79:321–346

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bernal V, Castano-Cerezo S, Gallego-Jara J, Ecija-Conesa A, de Diego T, Iborra JL, Canovas M (2014) Regulation of bacterial physiology by lysine acetylation of proteins. New Biotechnol 31:586–595

    Article  CAS  Google Scholar 

  23. Blander G, Guarente L (2004) The SIR2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  24. Hentchel KL, Thao S, Intile PJ, Escalante-Semerena JC (2015) Deciphering the regulatory circuitry that controls reversible lysine acetylation in salmonella enterica. MBio 6:e00891. doi:10.1128/mBio.00891-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ngoka LC (2008) Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers. Proteome Sci 6:30

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Liu Y, Dong Z, Xu J, Peng H, Liu Z, Zhang JT (2007) Regulation of function by dimerization through the amino-terminal membrane-spanning domain of human ABCC1/MRP1. J Biol Chem 282:8821–8830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) (AI4684064 to XFY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Frank Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yang, Y., Wolfe, A., Yang, X.F. (2018). Identification of Acetylated Proteins in Borrelia burgdorferi . In: Pal, U., Buyuktanir, O. (eds) Borrelia burgdorferi. Methods in Molecular Biology, vol 1690. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7383-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7383-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7382-8

  • Online ISBN: 978-1-4939-7383-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics