Skip to main content

Selective Cell-Surface Expression of Triheteromeric NMDA Receptors

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1677))

Abstract

The NMDA-type ionotropic glutamate receptors play pivotal roles in many brain functions, but are also involved in numerous brain disorders. Seven NMDA receptor subunits exist (GluN1, GluN2A-D, and GluN3A-B) that assemble into a diverse array of tetrameric receptor subtypes with distinct functional properties and physiological roles. Most NMDA receptors are composed of two GluN1 and two GluN2 subunits, which can assemble into four diheteromeric receptor subtypes composed of GluN1 and one type of GluN2 subunit (e.g., GluN1/2A), and presumably also six triheteromeric receptor subtypes composed of GluN1 and two different GluN2 subunits (e.g., GluN1/2A/2B). Despite accumulating evidence that a large proportion of native NMDA receptors are triheteromers, little is known about their function and pharmacology due to the lack of methods to faithfully express triheteromeric NMDA receptors in heterologous expression systems. The problem is that co-expression of GluN1 with two different GluN2 subunits generates two distinct diheteromeric receptor subtypes as well as one triheteromeric receptor subtype, thereby confounding studies on a homogenous population of triheteromeric NMDA receptors. Here, we will describe a method to selectively express recombinant triheteromeric GluN1/2A/2B receptors without interfering co-expression of diheteromeric GluN1/2A and GluN1/2B receptors. This method enables quantitative evaluation of functional and pharmacological properties of triheteromeric GluN1/2A/2B receptors, which are presumably the most abundant NMDA receptors in the adult cortex and hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4(4):319–321

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perez-Otano I, Larsen RS, Wesseling JF (2016) Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat Rev Neurosci 17(10):623–635

    Article  CAS  PubMed  Google Scholar 

  6. Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ (2007) NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27(31):8334–8343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rauner C, Kohr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286(9):7558–7566

    Article  CAS  PubMed  Google Scholar 

  8. Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33(21):9150–9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luo JH, Wang YH, Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51(1):79–86

    CAS  PubMed  Google Scholar 

  10. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368(6467):144–147

    Article  CAS  PubMed  Google Scholar 

  11. Brickley SG, Misra C, Mok MH, Mishina M, Cull-Candy SG (2003) NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 23(12):4958–4966

    CAS  PubMed  Google Scholar 

  12. Pina-Crespo JC, Gibb AJ (2002) Subtypes of NMDA receptors in new-born rat hippocampal granule cells. J Physiol 541(Pt 1):41–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones S, Gibb AJ (2005) Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. J Physiol 569(Pt 1):209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swanger SA, Vance KM, Pare JF, Sotty F, Fog K, Smith Y, Traynelis SF (2015) NMDA receptors containing the GluN2D subunit control neuronal function in the subthalamic nucleus. J Neurosci 35(48):15971–15983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chazot PL, Coleman SK, Cik M, Stephenson FA (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J Biol Chem 269(39):24403–24409

    CAS  PubMed  Google Scholar 

  16. Cathala L, Misra C, Cull-Candy S (2000) Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci 20(16):5899–5905

    CAS  PubMed  Google Scholar 

  17. Hatton CJ, Paoletti P (2005) Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron 46(2):261–274

    Article  CAS  PubMed  Google Scholar 

  18. Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81(5):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JAH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 79(2):555–566

    CAS  PubMed  Google Scholar 

  20. Stroebel D, Carvalho S, Grand T, Zhu S, Paoletti P (2014) Controlling NMDA receptor subunit composition using ectopic retention signals. J Neurosci 34(50):16630–16636

    Article  PubMed  Google Scholar 

  21. Kniazeff J, Bessis AS, Maurel D, Ansanay H, Prezeau L, Pin JP (2004) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 11(8):706–713

    Article  CAS  PubMed  Google Scholar 

  22. Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84(3):835–867

    Article  CAS  PubMed  Google Scholar 

  23. Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27(1):97–106

    Article  CAS  PubMed  Google Scholar 

  24. Kammerer RA, Frank S, Schulthess T, Landwehr R, Lustig A, Engel J (1999) Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices. Biochemistry 38(40):13263–13269

    Article  CAS  PubMed  Google Scholar 

  25. Burmakina S, Geng Y, Chen Y, Fan QR (2014) Heterodimeric coiled-coil interactions of human GABAB receptor. Proc Natl Acad Sci U S A 111(19):6958–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zerangue N, Malan MJ, Fried SR, Dazin PF, Jan YN, Jan LY, Schwappach B (2001) Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc Natl Acad Sci U S A 98(5):2431–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brock C, Boudier L, Maurel D, Blahos J, Pin JP (2005) Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 16(12):5572–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T (2004) Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 57(4):829–838

    Article  CAS  PubMed  Google Scholar 

  29. Benveniste M, Mayer ML (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59(3):560–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7(4):605–613

    Article  CAS  PubMed  Google Scholar 

  31. Cheriyan J, Balsara RD, Hansen KB, Castellino FJ (2016) Pharmacology of triheteromeric N-methyl-D-aspartate receptors. Neurosci Lett 617:240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi F, Mou T-C, Dorsett KN, Volkmann RA, Menniti FS, Sprang SR, Hansen KB (2016) Structural basis for negative allosteric modulation of GluN2A-containing NMDA receptors. Neuron (in press)

    Google Scholar 

  33. Serraz B, Grand T, Paoletti P (2016) Altered zinc sensitivity of NMDA receptors harboring clinically-relevant mutations. Neuropharmacology 109:196–204

    Article  CAS  PubMed  Google Scholar 

  34. Hackos DH, Lupardus PJ, Grand T, Chen Y, Wang TM, Reynen P, Gustafson A, Wallweber HJ, Volgraf M, Sellers BD, Schwarz JB, Paoletti P, Sheng M, Zhou Q, Hanson JE (2016) Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron 89(5):983–999

    Article  CAS  PubMed  Google Scholar 

  35. Yi F, Mou TC, Dorsett KN, Volkmann RA, Menniti FS, Sprang SR, Hansen KB (2016) Structural basis for negative allosteric modulation of GluN2A-containing NMDA receptors. Neuron 91(6):1316–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, Holloman CM, Golas G, Adams DR, Boerkoel CF, Gahl WA, Traynelis SF (2014) Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5:3251

    PubMed  PubMed Central  Google Scholar 

  37. Khatri A, Burger PB, Swanger SA, Hansen KB, Zimmerman S, Karakas E, Liotta DC, Furukawa H, Snyder JP, Traynelis SF (2014) Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharmacol 86(5):548–560

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maki BA, Aman TK, Amico-Ruvio SA, Kussius CL, Popescu GK (2012) C-terminal domains of N-methyl-D-aspartic acid receptor modulate unitary channel conductance and gating. J Biol Chem 287(43):36071–36080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Punnakkal P, Jendritza P, Kohr G (2012) Influence of the intracellular GluN2 C-terminal domain on NMDA receptor function. Neuropharmacology 62(5–6):1985–1992

    Article  CAS  PubMed  Google Scholar 

  40. Bossi E, Fabbrini MS, Ceriotti A (2007) Exogenous protein expression in Xenopus oocytes: basic procedures. Methods Mol Biol 375:107–131

    CAS  PubMed  Google Scholar 

  41. Stuhmer W (1998) Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol 293:280–300

    Article  CAS  PubMed  Google Scholar 

  42. Goldin AL (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 207:266–279

    Article  CAS  PubMed  Google Scholar 

  43. Goldin AL, Sumikawa K (1992) Preparation of RNA for injection into Xenopus oocytes. Methods Enzymol 207:279–297

    Article  CAS  PubMed  Google Scholar 

  44. Matten WT, Vande Woude GF (1995) Microinjection into Xenopus oocytes. Methods Enzymol 254:458–466

    Article  CAS  PubMed  Google Scholar 

  45. Leonard JP, Kelso SR (1990) Apparent desensitization of NMDA responses in Xenopus oocytes involves calcium-dependent chloride current. Neuron 4(1):53–60

    Article  CAS  PubMed  Google Scholar 

  46. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348):31–37

    Article  CAS  PubMed  Google Scholar 

  47. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9(5):861–871

    Article  CAS  PubMed  Google Scholar 

  48. Jespersen T, Grunnet M, Angelo K, Klaerke DA, Olesen SP (2002) Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. BioTechniques 32(3):536–538, 540

    CAS  PubMed  Google Scholar 

  49. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor - selectivity and mechanisms at recombinant Heteromeric receptors. Mol Pharmacol 44(4):851–859

    CAS  PubMed  Google Scholar 

  50. Logan SM, Rivera FE, Leonard JP (1999) Protein kinase C modulation of recombinant NMDA receptor currents: roles for the C-terminal C1 exon and calcium ions. J Neurosci 19(3):974–986

    CAS  PubMed  Google Scholar 

  51. Zheng X, Zhang L, Wang AP, Bennett MV, Zukin RS (1997) Ca2+ influx amplifies protein kinase C potentiation of recombinant NMDA receptors. J Neurosci 17(22):8676–8686

    CAS  PubMed  Google Scholar 

  52. Terhag J, Cavara NA, Hollmann M (2010) Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes. Methods 51(1):66–74

    Article  CAS  PubMed  Google Scholar 

  53. Schmidt C, Hollmann M (2009) Molecular and functional characterization of Xenopus laevis N-methyl-D-aspartate receptors. Mol Cell Neurosci 42(2):116–127

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt C, Klein C, Hollmann M (2009) Xenopus laevis Oocytes endogenously express all subunits of the ionotropic glutamate receptor family. J Mol Biol 390(2):182–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Institutes of Health (R01NS065371, P20GM103546, and R01NS097536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper B. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yi, F., Traynelis, S.F., Hansen, K.B. (2017). Selective Cell-Surface Expression of Triheteromeric NMDA Receptors. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 1677. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7321-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7321-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7320-0

  • Online ISBN: 978-1-4939-7321-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics