Skip to main content

Structural Equation Modeling

  • Protocol
  • First Online:
Statistical Human Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1666))

Abstract

Structural equation modeling (SEM) is a multivariate statistical framework that is used to model complex relationships between directly observed and indirectly observed (latent) variables. SEM is a general framework that involves simultaneously solving systems of linear equations and encompasses other techniques such as regression, factor analysis, path analysis, and latent growth curve modeling. Recently, SEM has gained popularity in the analysis of complex genetic traits because it can be used to better analyze the relationships between correlated variables (traits), to model genes as latent variables as a function of multiple observed genetic variants, and to assess the association between multiple genetic variants and multiple correlated phenotypes of interest. Though the general SEM framework only allows for the analysis of independent observations, recent work has extended SEM for the analysis of data on general pedigrees. Here, we review the theory of SEM for both unrelated and family data, describe the available software for SEM, and provide examples of SEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bollen K (1989) Structural equations with latent variables. John Wiley & Sons, New York

    BookĀ  Google ScholarĀ 

  2. McDonald RP, Ho MH (2002) Principles and practice in reporting structural equation analyses. Psychol methods 7:64ā€“82

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, New York

    Google ScholarĀ 

  4. Bollen K (2001) In: Smesher N, Baltes P (eds) International encyclopedia of the social and behavioral sciences. Elsevier Sciences, Oxford, pp 7282ā€“7287

    ChapterĀ  Google ScholarĀ 

  5. Sobel M (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 13:290ā€“312

    ArticleĀ  Google ScholarĀ 

  6. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51:1173ā€“1182

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. MuthĆ©n BO (1984) A general structural equation model with dichotomous ordered categorical and continuous latent variable indicator. Psychometrika 49:115ā€“132

    ArticleĀ  Google ScholarĀ 

  8. Hancock GR, Mueller RO (2006) Structural equation modeling: a second course. Information Age Publishing, Inc., Greenwich, CT

    Google ScholarĀ 

  9. Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6:1ā€“55

    ArticleĀ  Google ScholarĀ 

  10. Wright S (1923) The theory of path coefficients: a reply to Nilesā€™s criticism. Genetics 8:239ā€“255

    PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  11. Neale M, Cardon LR (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers, Dordrecht, The Netherlands

    BookĀ  Google ScholarĀ 

  12. Rao DC (1985) In: Krishnaiah PR (ed) Multivariate analysis. Elsevier Science Publishers, Oxford, pp 467ā€“484. (Chapter 29)

    Google ScholarĀ 

  13. Nock NL, Larkin EK, Morris NJ, Li Y, Stein CM (2007) Modeling the complex geneĀ Ć—Ā environment interplay in the simulated rheumatoid arthritis GAW15 data using latent variable structural equation modeling. BMC Proc 1(Suppl 1):S118

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Nock NL et al (2009) Defining genetic determinants of the metabolic syndrome in the Framingham heart study using association and structural equation modeling methods. BMC Proc 3(Suppl 7):S50

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Todorov AA et al (1998) Testing causal hypotheses in multivariate linkage analysis of quantitative traits: general formulation and application to sibpair data. Genet Epidemiol 15:263ā€“278

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Morris NJ, Elston RC, Stein CM (2011) A framework for structural equation models in general pedigrees. Hum Hered 70:278ā€“286

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Buhi ER, Goodson P, Neilands TB (2007) Structural equation modeling: a primer for health behavior researchers. Am J Health Behav 31:74ā€“85

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Song YE, Stein CM, Morris NJ (2015) strum: an R package for structural modeling of latent variables for general pedigrees. BMC Genet 16:35

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Bollen K (1998) In: Armitage P, Colton T (eds) Encyclopedia of biostatistics. John Wiley & Sons, Sussex, England, pp 4363ā€“4372

    Google ScholarĀ 

  20. Stein CM, Hall NB, Malone LL, Mupere E (2013) The household contact study design for genetic epidemiological studies of infectious diseases. Front Genet 4:61. doi:10.3389/fgene.2013.00061

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Mahan C et al (2012) Innate and adaptive immune responses during acute M. tuberculosis infection in adult household contacts in Kampala, Uganda. Am J Trop Med Hyg 86:690ā€“697

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Tao L et al (2013) Genetic and shared environmental influences on interferon-gamma production in response to Mycobacterium tuberculosis antigens in a Ugandan population. Am J Trop Med Hyg 89:169ā€“173

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Hall NB et al (2015) Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun 16:127ā€“133

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Wampande EM et al (2013) Long-term dominance of mycobacterium tuberculosis Uganda family in peri-urban Kampala-Uganda is not associated with cavitary disease. BMC Infect Dis 13:484. doi:10.1186/1471-2334-13-484

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Curran PJ, Finch JF, West SG (1996) The robustness of tests statistics to nonnormality and specification error in confirmatory factor analysis. Psychol Methods 1:16ā€“29

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Stein, C.M., Morris, N.J., Hall, N.B., Nock, N.L. (2017). Structural Equation Modeling. In: Elston, R. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 1666. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7274-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7274-6_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7273-9

  • Online ISBN: 978-1-4939-7274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics