Advertisement

Structural Equation Modeling

  • Catherine M. Stein
  • Nathan J. Morris
  • Noémi B. Hall
  • Nora L. Nock
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1666)

Abstract

Structural equation modeling (SEM) is a multivariate statistical framework that is used to model complex relationships between directly observed and indirectly observed (latent) variables. SEM is a general framework that involves simultaneously solving systems of linear equations and encompasses other techniques such as regression, factor analysis, path analysis, and latent growth curve modeling. Recently, SEM has gained popularity in the analysis of complex genetic traits because it can be used to better analyze the relationships between correlated variables (traits), to model genes as latent variables as a function of multiple observed genetic variants, and to assess the association between multiple genetic variants and multiple correlated phenotypes of interest. Though the general SEM framework only allows for the analysis of independent observations, recent work has extended SEM for the analysis of data on general pedigrees. Here, we review the theory of SEM for both unrelated and family data, describe the available software for SEM, and provide examples of SEM analysis.

Key words

Multivariate analysis Latent variables Modeling Candidate gene analysis Complex traits Path analysis Structural equation modeling Association Population studies Family studies SEM 

References

  1. 1.
    Bollen K (1989) Structural equations with latent variables. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  2. 2.
    McDonald RP, Ho MH (2002) Principles and practice in reporting structural equation analyses. Psychol methods 7:64–82CrossRefPubMedGoogle Scholar
  3. 3.
    Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, New YorkGoogle Scholar
  4. 4.
    Bollen K (2001) In: Smesher N, Baltes P (eds) International encyclopedia of the social and behavioral sciences. Elsevier Sciences, Oxford, pp 7282–7287CrossRefGoogle Scholar
  5. 5.
    Sobel M (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 13:290–312CrossRefGoogle Scholar
  6. 6.
    Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51:1173–1182CrossRefPubMedGoogle Scholar
  7. 7.
    Muthén BO (1984) A general structural equation model with dichotomous ordered categorical and continuous latent variable indicator. Psychometrika 49:115–132CrossRefGoogle Scholar
  8. 8.
    Hancock GR, Mueller RO (2006) Structural equation modeling: a second course. Information Age Publishing, Inc., Greenwich, CTGoogle Scholar
  9. 9.
    Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6:1–55CrossRefGoogle Scholar
  10. 10.
    Wright S (1923) The theory of path coefficients: a reply to Niles’s criticism. Genetics 8:239–255PubMedPubMedCentralGoogle Scholar
  11. 11.
    Neale M, Cardon LR (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  12. 12.
    Rao DC (1985) In: Krishnaiah PR (ed) Multivariate analysis. Elsevier Science Publishers, Oxford, pp 467–484. (Chapter 29)Google Scholar
  13. 13.
    Nock NL, Larkin EK, Morris NJ, Li Y, Stein CM (2007) Modeling the complex gene × environment interplay in the simulated rheumatoid arthritis GAW15 data using latent variable structural equation modeling. BMC Proc 1(Suppl 1):S118CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nock NL et al (2009) Defining genetic determinants of the metabolic syndrome in the Framingham heart study using association and structural equation modeling methods. BMC Proc 3(Suppl 7):S50CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Todorov AA et al (1998) Testing causal hypotheses in multivariate linkage analysis of quantitative traits: general formulation and application to sibpair data. Genet Epidemiol 15:263–278CrossRefPubMedGoogle Scholar
  16. 16.
    Morris NJ, Elston RC, Stein CM (2011) A framework for structural equation models in general pedigrees. Hum Hered 70:278–286CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Buhi ER, Goodson P, Neilands TB (2007) Structural equation modeling: a primer for health behavior researchers. Am J Health Behav 31:74–85CrossRefPubMedGoogle Scholar
  18. 18.
    Song YE, Stein CM, Morris NJ (2015) strum: an R package for structural modeling of latent variables for general pedigrees. BMC Genet 16:35CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bollen K (1998) In: Armitage P, Colton T (eds) Encyclopedia of biostatistics. John Wiley & Sons, Sussex, England, pp 4363–4372Google Scholar
  20. 20.
    Stein CM, Hall NB, Malone LL, Mupere E (2013) The household contact study design for genetic epidemiological studies of infectious diseases. Front Genet 4:61. doi: 10.3389/fgene.2013.00061 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mahan C et al (2012) Innate and adaptive immune responses during acute M. tuberculosis infection in adult household contacts in Kampala, Uganda. Am J Trop Med Hyg 86:690–697CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tao L et al (2013) Genetic and shared environmental influences on interferon-gamma production in response to Mycobacterium tuberculosis antigens in a Ugandan population. Am J Trop Med Hyg 89:169–173CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hall NB et al (2015) Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun 16:127–133CrossRefPubMedGoogle Scholar
  24. 24.
    Wampande EM et al (2013) Long-term dominance of mycobacterium tuberculosis Uganda family in peri-urban Kampala-Uganda is not associated with cavitary disease. BMC Infect Dis 13:484. doi: 10.1186/1471-2334-13-484 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Curran PJ, Finch JF, West SG (1996) The robustness of tests statistics to nonnormality and specification error in confirmatory factor analysis. Psychol Methods 1:16–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Catherine M. Stein
    • 1
    • 2
  • Nathan J. Morris
    • 1
  • Noémi B. Hall
    • 1
  • Nora L. Nock
    • 1
  1. 1.Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Center for Proteomics and BioinformaticsCase Western Reserve UniversityClevelandUSA

Personalised recommendations