Skip to main content

A Secretion System for Cargo Protein Identification of Vacuolar Sorting Receptors

  • Protocol
  • First Online:
Plant Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1662))

  • 2332 Accesses

Abstract

Vacuolar sorting receptors (VSRs) are type I integral membrane family proteins in plant cells that can sort cargo proteins at the late Golgi or trans-Golgi network (TGN) for vacuolar transport via the prevacuolar compartment (PVC). However, little is known about VSR cargo proteins in plants. Here, we describe a new method for the identification of VSR cargos, which is based on the premise that the expressed N-terminus of VSRs will be secreted into the culture media along with their corresponding cargo proteins. The protocol described here should be applicable to all VSRs and should be also useful for other receptor cargo identification and protein–protein interaction in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuhaus JM, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  CAS  PubMed  Google Scholar 

  2. Jiang L, Phillips TE, Rogers SW, Rogers JC (2000) Biogenesis of the protein storage vacuole crystalloid. J Cell Biol 150:755–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A 91:3403–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paris N, Rogers SW, Jiang LW, Kirsch T, Beevers L, Phillips TE et al (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paris N, Neuhaus JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50:903–914

    Article  CAS  PubMed  Google Scholar 

  6. Sanderfoot AA, Ahmed SU, Marty-Mazars D, Rapoport I, Kirchhausen T, Marty F et al (1998) A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc Natl Acad Sci U S A 95:9920–9925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y-B, Rogers SW, Tse YC, Lo SW, Sun SSM, Jauh G-Y et al (2002) BP-80 and homologs are concentrated on post-Golgi, probable lytic prevacuolar compartments. Plant Cell Physiol 43:726–742

    Article  CAS  PubMed  Google Scholar 

  8. Tse YC, Mo BX, Hillmer S, Zhao M, Lo SW, Robinson DG et al (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang H, Zhuang XH, Hillmer S, Robinson DG, Jiang LW (2011) Vacuolar sorting receptor (VSR) Proteins reach the plasma membrane in germinating pollen tubes. Mol Plant 4:845–853

    Article  CAS  PubMed  Google Scholar 

  10. Jiang L, Rogers JC (1998) Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol 143:1183–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miao YS, Yan PK, Kim H, Hwang I, Jiang LW (2006) Localization of green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar compartments in tobacco BY-2 cells. Plant Physiol 142:945–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao X, Rogers SW, Butler J, Beevers L, Rogers JC (2000) Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell 12:493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen J, Suen PK, Wang X, Lin Y, Lo SW, Rojo E et al (2013) An in vivo expression system for the identification of cargo proteins of vacuolar sorting receptors in Arabidopsis culture cells. Plant J 75(6):1003–1017

    Article  CAS  PubMed  Google Scholar 

  14. Suen PKSJ, Sun SSM, Jiang L (2010) Expression and characterization of two functional vacuolar sorting receptor (VSR) proteins, BP-80 and AtVSR4 from culture media of transgenic tobacco BY-2 cells. Plant Sci 179:68–76

    Article  CAS  Google Scholar 

  15. daSilva LLP, Foresti O, Denecke J (2006) Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. Plant Cell 18:1477–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saint-Jean B, Seveno-Carpentier E, Alcon C, Neuhaus J-M, Paris N (2010) The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. Plant Cell 22(8):2825–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kunzl F, Fruholz S, Fassler F, Li BB, Pimpl P (2016) Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. Nat Plants 2:16017

    Article  PubMed  Google Scholar 

  18. Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B et al (2010) Sorting of plant vacuolar proteins is initiated in the ER. Plant J 62:601–614

    Article  CAS  PubMed  Google Scholar 

  19. Niemes S, Langhans M, Viotti C, Scheuring D, Yan MSW, Jiang L et al (2010) Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Plant J 61:107–121

    Article  CAS  PubMed  Google Scholar 

  20. Robinson DG (2014) Trafficking of vacuolar sorting receptors: new aata and new problems. Plant Physiol 165:1417–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson DG, Neuhaus JM (2016) Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. J Exp Bot 67:4435–4449

    Article  CAS  PubMed  Google Scholar 

  22. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Research Grants Council of Hong Kong (G-CUHK402/15, CUHK465112, 466313, 14130716, 14102417, CUHK2/CRF/11G, C4011-14R, HKUST12/CRF/13G, and AoE/M-05/12), NSFC/RGC (N_CUHK406/12), NSFC (31270226, 31670179 and 31470294), CAS-Croucher Joint Lab Scheme, Shenzhen Peacock Project (KQTD201101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Shen, J. (2017). A Secretion System for Cargo Protein Identification of Vacuolar Sorting Receptors. In: Jiang, L. (eds) Plant Protein Secretion. Methods in Molecular Biology, vol 1662. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7262-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7262-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7261-6

  • Online ISBN: 978-1-4939-7262-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics