Skip to main content

Measurement of Astrocytic Glutamate Release Using Genetically Encoded Probe Combined with TIRF Microscopy

  • Protocol
  • First Online:
Biochemical Approaches for Glutamatergic Neurotransmission

Part of the book series: Neuromethods ((NM,volume 130))

  • 1118 Accesses

Abstract

Astrocytes modulate brain function such as memory and cognition by processing neuronal activity through the release of transmitters such as glutamate, ATP and d-serine. Various release mechanisms have been proposed depending on pathophysiological conditions. Among them, inverted transport, ion channels mediated release, and vesicular release. To better understand how cellular interactions alter glutamate release, we used live imaging techniques to monitor the dynamics of glutamate release in various cell culture conditions. For that purpose we combined total internal reflection fluorescence (TIRF) microscopy with a genetically encoded fluorescent glutamate sensor (iGluSnFR) which is an intensity-based glutamate-sensing fluorescent reporter that has a high signal-to-noise ratio. This system allows a direct measurement of glutamate in real time. Our goal is to provide guidelines on how to use this approach and to highlight its pros and cons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63. doi:10.1016/j.molmed.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  2. Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA (2010) Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia 58(5):572–587. doi:10.1002/glia.20946

    PubMed  PubMed Central  Google Scholar 

  3. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189. doi:10.1038/nn.4201

    Article  CAS  PubMed  Google Scholar 

  4. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431. doi:10.1016/j.tins.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  5. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285. doi:10.1038/34651

    Article  CAS  PubMed  Google Scholar 

  6. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620. doi:10.1038/nn1246

    Article  CAS  PubMed  Google Scholar 

  7. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24(39):8606–8620. doi:10.1523/JNEUROSCI.2660-04.2004

    Article  CAS  PubMed  Google Scholar 

  8. Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281(41):30684–30696. doi:10.1074/jbc.M606429200

    Article  CAS  PubMed  Google Scholar 

  9. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17(20):7817–7830

    CAS  PubMed  Google Scholar 

  10. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. doi:10.1038/369744a0

    Article  CAS  PubMed  Google Scholar 

  11. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4(8):803–812. doi:10.1038/90507

    Article  CAS  PubMed  Google Scholar 

  12. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43(5):729–743. doi:10.1016/j.neuron.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  13. Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24(31):6920–6927. doi:10.1523/JNEUROSCI.0473-04.2004

    Article  CAS  PubMed  Google Scholar 

  14. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692. doi:10.1038/3684

    Article  CAS  PubMed  Google Scholar 

  15. Letellier M, Park YK, Chater TE, Chipman PH, Gautam SG, Oshima-Takago T, Goda Y (2016) Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks. Proc Natl Acad Sci U S A 113(19):E2685–E2694. doi:10.1073/pnas.1523717113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116. doi:10.1126/science.1116916

    Article  CAS  PubMed  Google Scholar 

  17. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40(5):971–982

    Article  CAS  PubMed  Google Scholar 

  18. Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26(20):5370–5382. doi:10.1523/JNEUROSCI.5255-05.2006

    Article  CAS  PubMed  Google Scholar 

  19. Ben Achour S, Pont-Lezica L, Bechade C, Pascual O (2010) Is astrocyte calcium signaling relevant for synaptic plasticity? Neuron Glia Biol 6(3):147–155. doi:10.1017/S1740925X10000207

    Article  PubMed  Google Scholar 

  20. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2). doi:10.1042/AN20110061

  21. Vasylieva N, Maucler C, Meiller A, Viscogliosi H, Lieutaud T, Barbier D, Marinesco S (2013) Immobilization method to preserve enzyme specificity in biosensors: consequences for brain glutamate detection. Anal Chem 85(4):2507–2515. doi:10.1021/ac3035794

    Article  CAS  PubMed  Google Scholar 

  22. Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20(5):1800–1808

    CAS  PubMed  Google Scholar 

  23. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101(25):9441–9446. doi:10.1073/pnas.0401960101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374

    Article  CAS  PubMed  Google Scholar 

  25. Masson J, Darmon M, Conjard A, Chuhma N, Ropert N, Thoby-Brisson M, Foutz AS, Parrot S, Miller GM, Jorisch R, Polan J, Hamon M, Hen R, Rayport S (2006) Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J Neurosci 26(17):4660–4671. doi:10.1523/JNEUROSCI.4241-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M, Cavillon G, Rogemond V, Confavreux C, Honnorat J, Giraudon P (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133(9):2578–2591. doi:10.1093/brain/awq177

    Article  PubMed  Google Scholar 

  27. Nedergaard M, Verkhratsky A (2012) Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60(7):1013–1023. doi:10.1002/glia.22288

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10(2):162–170. doi:10.1038/nmeth.2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102(24):8740–8745. doi:10.1073/pnas.0503274102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 105(11):4411–4416. doi:10.1073/pnas.0712008105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu T, Sun L, Xiong Y, Shang S, Guo N, Teng S, Wang Y, Liu B, Wang C, Wang L, Zheng L, Zhang CX, Han W, Zhou Z (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31(29):10593–10601. doi:10.1523/JNEUROSCI.6401-10.2011

    Article  CAS  PubMed  Google Scholar 

  32. Shigetomi E, Khakh BS (2009) Measuring near plasma membrane and global intracellular calcium dynamics in astrocytes. J Vis Exp 26. doi:10.3791/1142

  33. Roumier A, Pascual O, Bechade C, Wakselman S, Poncer JC, Real E, Triller A, Bessis A (2008) Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One 3(7):e2595. doi:10.1371/journal.pone.0002595

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109(4):E197–E205. doi:10.1073/pnas.1111098109

    Article  CAS  PubMed  Google Scholar 

  35. Poulter NS, Pitkeathly WT, Smith PJ, Rappoport JZ (2015) The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications. Methods Mol Biol 1251:1–23. doi:10.1007/978-1-4939-2080-8_1

    Article  CAS  PubMed  Google Scholar 

  36. Namiki S, Sakamoto H, Iinuma S, Iino M, Hirose K (2007) Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. Eur J Neurosci 25(8):2249–2259. doi:10.1111/j.1460-9568.2007.05511.x

    Article  PubMed  Google Scholar 

  37. Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Watanabe M, Hirose K, Iino M (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proc Natl Acad Sci U S A 107(14):6526–6531. doi:10.1073/pnas.0913154107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77(2):664–675

    Article  CAS  PubMed  Google Scholar 

  39. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. doi:10.1126/science.1258096

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pascual .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Takata-Tsuji, F., Choulnamountri, N., Place, C., Pascual, O. (2018). Measurement of Astrocytic Glutamate Release Using Genetically Encoded Probe Combined with TIRF Microscopy. In: Parrot, S., Denoroy, L. (eds) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7228-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7228-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7227-2

  • Online ISBN: 978-1-4939-7228-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics