Skip to main content

Nontargeted Brain Lipidomic Profiling Performed by UPLC-ESI-qToF-MS/MS

  • Protocol
  • First Online:
Current Proteomic Approaches Applied to Brain Function

Part of the book series: Neuromethods ((NM,volume 127))

  • 755 Accesses

Abstract

Lipidomics is a newly emerged discipline that has made a significant impact in neurobiological research, and it is defined as “the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation.” Lipids play diverse roles in brain cellular function which is reflected by an enormous variation in the structures of lipid molecules. The study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations at physiologic and pathologic level and confer novel insights pertaining to the related pathogenesis and unveil potential markers to facilitate early disease diagnosis. In this chapter we detail a nontargeted approach to determine the global lipidomic profile of brain samples using ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452. doi:10.1126/science.1083653

    Article  CAS  PubMed  Google Scholar 

  2. Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 8:743–754. doi:10.1038/nrn2233

    Article  CAS  PubMed  Google Scholar 

  3. Farooqui AA (2009) Lipid mediators in the neural cell nucleus: their metabolism, signaling, and association with neurological disorders. Neuroscientist 15:392–407. doi:10.1177/1073858409337035

    Article  CAS  PubMed  Google Scholar 

  4. Gross RW, Han X (2011) Lipidomics at the interface of structure and function in systems biology. Chem Biol 18:284–291. doi:10.1016/j.chembiol.2011.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta Mol Cell Biol Lipids 1811:637–647. doi:10.1016/j.bbalip.2011.06.009

    Article  CAS  Google Scholar 

  6. Lipid M (2016) Lipid MAPS Lipidomics Gateway. http://www.lipidmaps.org/. Accessed 13 Dec 2016

  7. Han X (2007) Neurolipidomics: challenges and developments. Front Biosci 12:2601–2615. doi:10.2741/2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naudí A, Cabré R, Jové M, Ayala V, Gonzalo H, Portero-Otín M, Ferrer I, Pamplona R (2015) Lipidomics of human brain aging and Alzheimer’s disease pathology. Int Rev Neurobiol 122:133–189. doi:10.1016/bs.irn.2015.05.008

    Article  PubMed  Google Scholar 

  9. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079. doi:10.1194/jlr.R300004-JLR200

    Article  CAS  PubMed  Google Scholar 

  10. Trushina E, Mielke MM (2014) Recent advances in the application of metabolomics to Alzheimer’s disease. Biochim Biophys Acta 1842:1232–1239. doi:10.1016/j.bbadis.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  11. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412. doi:10.1002/mas.20023

    Article  CAS  PubMed  Google Scholar 

  12. Wang M, Han X (2016) Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury. Methods Mol Biol 1303:405–422. doi:10.1007/978-1-4939-2627-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amoscato AA, Sparvero LJ, He RR, Watkins S, Bayir H, Kagan VE (2014) Imaging mass spectrometry of diversified cardiolipin molecular species in the brain. Anal Chem 86:6587–6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Allegood J, Liu Y, Wang E, Cachón-González B, Cox TM, Merrill AH, Sullards MC (2008) Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 80:2780–2788. doi:10.1021/ac702350g

    Article  CAS  PubMed  Google Scholar 

  15. Yang K, Han X (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci 41:954–969. doi:10.1016/j.tibs.2016.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seppänen-Laakso T, Orešič M (2009) How to study lipidomes. J Mol Endocrinol 42:185–190. doi:10.1677/JME-08-0150

    Article  PubMed  Google Scholar 

  17. Watson AD (2006) Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111. doi:10.1194/jlr.R600022-JLR200

    Article  CAS  PubMed  Google Scholar 

  18. Jové M, Naudí A, Gambini J, Borras C, Cabré R, Portero-Otín M, Viña J, Pamplona R (2017) A stress-resistant lipidomic signature confers extreme longevity to humans. J Gerontol A Biol Sci Med Sci 72:30–37. doi:10.1093/gerona/glw048

    Article  PubMed  Google Scholar 

  19. Pizarro C, Arenzana-Rámila I, Pérez-Del-Notario N, Pérez-Matute P, González-Sáiz JM (2013) Plasma lipidomic profiling method based on ultrasound extraction and liquid chromatography mass spectrometry. Anal Chem 85:12085–12092. doi:10.1021/ac403181c

    Article  CAS  PubMed  Google Scholar 

  20. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146. doi:10.1194/jlr.D700041-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK (2013) Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8:17–32. doi:10.1038/nprot.2012.135

    Article  CAS  PubMed  Google Scholar 

  22. Dane AD, Hendriks MMWB, Reijmers TH, Harms AC, Troost J, Vreeken RJ, Boomsma DI, Van Duijn CM, Slagboom EP, Hankemeier T (2014) Integrating metabolomics profiling measurements across multiple biobanks. Anal Chem 86:4110–4114. doi:10.1021/ac404191a

    Article  CAS  PubMed  Google Scholar 

  23. Castro-Perez JM, Kamphorst J, Degroot J, Lafeber F, Goshawk J, Yu K, Shockcor JP, Vreeken RJ, Hankemeier T (2010) Comprehensive LC-MSE lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J Proteome Res 9:2377–2389. doi:10.1021/pr901094j

    Article  CAS  PubMed  Google Scholar 

  24. Sana TR, Roark JC, Li X, Waddell K, Fischer SM (2008) Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech 19:258–266

    PubMed  PubMed Central  Google Scholar 

  25. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257. doi:10.1093/nar/gkv380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:652–660. doi:10.1093/nar/gkp356

    Article  Google Scholar 

  27. Embade N, Mariño Z, Diercks T, Cano A, Lens S, Cabrera D, Navasa M, Falcón-Pérez JM, Caballería J, Castro A, Bosch J, Mato JM, Millet O (2016) Metabolic characterization of advanced liver fibrosis in HCV patients as studied by serum 1H-NMR spectroscopy. PLoS One 11:1–19. doi:10.1371/journal.pone.0155094

    Article  Google Scholar 

  28. Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14:323–348. doi:10.1037/a0016973.An

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kind T, Liu K, Lee DY, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast-in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758. doi:10.4315/0362-028X.JFP-13-395.Knowledge

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MEDLINE®/PubMed® Resources Guide U.S. National Library of Medicine. https://www.nlm.nih.gov/bsd/pmresources.html#. Accessed 15 Dec 2016

  31. Ferrer I (2015) Selection of controls in the study of human neurodegenerative diseases in old age. J Neural Transm 122(7):941. doi:10.1007/s00702-014-1287-y

    Article  CAS  PubMed  Google Scholar 

  32. Cabré R, Jové M, Naudí A, Ayala V, Piñol-Ripoll G, Gil-Villar MP, Dominguez-Gonzalez M, Obis È, Berdun R, Mota-Martorell N, Portero-Otin M, Ferrer I, Pamplona R (2016) Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex. Front Mol Neurosci 9:138. doi:10.3389/fnmol.2016.00138

    Article  PubMed  PubMed Central  Google Scholar 

  33. Folch J, Lees M, Sloane GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  34. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi:10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  35. Jové M, Portero-Otín M, Naudí A, Ferrer I, Pamplona R (2014) Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 73:640–657. doi:10.1097/NEN.0000000000000091

    Article  PubMed  Google Scholar 

  36. Jové M, Ayala V, Ramírez-Núñez O, Naudí A, Cabré R, Spickett CM, Portero-Otín M, Pamplona R (2013) Specific lipidome signatures in central nervous system from methionine-restricted mice. J Proteome Res 12:2679–2689. doi:10.1021/pr400064a

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the Spanish Ministry of Economy and Competitiveness, Institute of Health Carlos III (FIS grant PI14/00328), the Autonomous Government of Catalonia (2014SGR168), and the “Agrupació Mútua” Foundation. This work was cofinanced by FEDER funds from the European Union (“a way to build Europe”). R.C. received predoctoral fellowships from the Autonomous Government of Catalonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Naudí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Naudí, A., Cabré, R., Jové, M., Pamplona, R. (2017). Nontargeted Brain Lipidomic Profiling Performed by UPLC-ESI-qToF-MS/MS. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Current Proteomic Approaches Applied to Brain Function. Neuromethods, vol 127. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7119-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7119-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7118-3

  • Online ISBN: 978-1-4939-7119-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics