Skip to main content

Fusion Reporter Approaches to Monitoring Transmembrane Helix Interactions in Bacterial Membranes

  • Protocol
  • First Online:
Bacterial Protein Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1615))

Abstract

In transenvelope multiprotein machines such as bacterial secretion systems, protein–protein interactions not only occur between soluble domains but might also be mediated by helix–helix contacts in the inner membrane. Here we describe genetic assays commonly used to test interactions between transmembrane α-helices in their native membrane environment. These assays are based on the reconstitution of dimeric regulators allowing the control of expression of reporter genes. We provide detailed protocols for the TOXCAT and GALLEX assays used to monitor homotypic and heterotypic transmembrane helix–helix interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lallemand M, Login FH, Guschinskaya N, Pineau C, Effantin G, Robert X, Shevchik VE (2013) Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system. PLoS One 8:e79562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ma LS, Lin JS, Lai EM (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191:4316–4329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aschtgen MS, Gavioli M, Dessen A, Lloubès R, Cascales E (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol 75:886–899

    Article  CAS  PubMed  Google Scholar 

  4. Durand E, Zoued A, Spinelli S, Watson PJ, Aschtgen MS, Journet L, Cambillau C, Cascales E (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287:14157–14168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garza I, Christie PJ (2013) A putative transmembrane leucine zipper of agrobacterium VirB10 is essential for T-pilus biogenesis but not type IV secretion. J Bacteriol 195:3022–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schneider D, Finger C, Prodöhl A, Volkmer T (2007) From interactions of single transmembrane helices to folding of alpha-helical membrane proteins: analyzing transmembrane helix-helix interactions in bacteria. Curr Protein Pept Sci 8:45–61

    Article  CAS  PubMed  Google Scholar 

  7. Fink A, Sal-Man N, Gerber D, Shai Y (2012) Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. Biochim Biophys Acta 1818:974–983

    Article  CAS  PubMed  Google Scholar 

  8. Hu JC (1995) Repressor fusions as a tool to study protein-protein interactions. Structure 3:431–433

    Article  CAS  PubMed  Google Scholar 

  9. Leeds JA, Beckwith J (1998) Lambda repressor N-terminal DNA-binding domain as an assay for protein transmembrane segment interactions in vivo. J Mol Biol 280:799–810

    Article  CAS  PubMed  Google Scholar 

  10. Leeds JA, Beckwith J (2000) A gene fusion method for assaying interactions of protein transmembrane segments in vivo. Methods Enzymol 2327:165–175

    Article  Google Scholar 

  11. Turner LR, Olson JW, Lory S (1997) The XcpR protein of Pseudomonas aeruginosa dimerizes via its N-terminus. Mol Microbiol 26:877–887

    Article  CAS  PubMed  Google Scholar 

  12. Dang TA, Zhou XR, Graf B, Christie PJ (1999) Dimerization of the agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32:1239–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rashkova S, Zhou XR, Chen J, Christie PJ (2000) Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase. J Bacteriol 182:4137–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langosch D, Brosig B, Kolmar H, Fritz HJ (1996) Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol 263:525–530

    Article  CAS  PubMed  Google Scholar 

  15. Russ WP, Engelman DM (1999) TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci U S A 96:863–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joce C, Wiener A, Yin H (2011) Transmembrane domain oligomerization propensity determined by ToxR assay. J Vis Exp 51

    Google Scholar 

  17. Lindner E, Langosch D (2006) A ToxR-based dominant-negative system to investigate heterotypic transmembrane domain interactions. Proteins 65:803–807

    Article  CAS  PubMed  Google Scholar 

  18. Lindner E, Unterreitmeier S, Ridder AN, Langosch D (2007) An extended ToxR POSSYCCAT system for positive and negative selection of self-interacting transmembrane domains. J Microbiol Methods 69:298–305

    Article  CAS  PubMed  Google Scholar 

  19. Lis M, Blumenthal K (2006) A modified, dual reporter TOXCAT system for monitoring homodimerization of transmembrane segments of proteins. Biochem Biophys Res Commun 339:321–324

    Article  CAS  PubMed  Google Scholar 

  20. Schneider D, Engelman DM (2003) GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane. J Biol Chem 278:3105–3111

    Article  CAS  PubMed  Google Scholar 

  21. Cymer F, Sanders CR, Schneider D (2013) Analyzing oligomerization of individual transmembrane helices and of entire membrane proteins in E. coli: a hitchhiker’s guide to GALLEX. Methods Mol Biol 932:259–276

    Article  CAS  PubMed  Google Scholar 

  22. Tome L, Steindorf D, Schneider D (2013) Genetic systems for monitoring interactions of transmembrane domains in bacterial membranes. Methods Mol Biol 1063:57–91

    Article  PubMed  Google Scholar 

  23. Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ladant D, Karimova G (2000) Genetic systems for analyzing protein-protein interactions in bacteria. Res Microbiol 151:711–720

    Article  CAS  PubMed  Google Scholar 

  25. Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58:325–334

    Article  CAS  PubMed  Google Scholar 

  26. Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sivanesan D, Hancock MA, Villamil Giraldo AM, Baron C (2010) Quantitative analysis of VirB8-VirB9-VirB10 interactions provides a dynamic model of type IV secretion system core complex assembly. Biochemistry 49:4483–4493

    Article  CAS  PubMed  Google Scholar 

  28. Cisneros DA, Bond PJ, Pugsley AP, Campos M, Francetic O (2012) Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31:1041–1053

    Article  CAS  PubMed  Google Scholar 

  29. Georgiadou M, Castagnini M, Karimova G, Ladant D, Pelicic V (2012) Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol Microbiol 84:857–873

    Article  CAS  PubMed  Google Scholar 

  30. Zoued A, Durand E, Bebeacua C, Brunet YR, Douzi B, Cambillau C, Cascales E, Journet L (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288:27031–27041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pais SV, Milho C, Almeida F, Mota LJ (2013) Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. PLoS One 8:e56292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pineau C, Guschinskaya N, Robert X, Gouet P, Ballut L, Shevchik VE (2014) Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 94:126–140

    Article  CAS  PubMed  Google Scholar 

  33. Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E (2015) The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11:e1005545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, Flaugnatti N, Legrand P, Journet L, Fronzes R, Mignot T, Cambillau C, Cascales E (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531:59–63

    Article  CAS  PubMed  Google Scholar 

  35. Llosa M, Zunzunegui S, de la Cruz F (2003) Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100:10465–10470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Segura RL, Aguila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I (2013) The transmembrane domain of the T4SS coupling protein TrwB and its role in protein-protein interactions. Biochim Biophys Acta 1828:2015–2025

    Article  CAS  PubMed  Google Scholar 

  37. Sawma P, Roth L, Blanchard C, Bagnard D, Crémel G, Bouveret E, Duneau JP, Sturgis JN, Hubert P (2014) Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling. J Mol Biol 426:4099–4111

    Article  CAS  PubMed  Google Scholar 

  38. Dimitrova M, Younès-Cauet G, Oertel-Buchheit P, Porte D, Schnarr M, Granger-Schnarr M (1998) A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol Gen Genet 257:205–212

    Article  Google Scholar 

Download references

Acknowledgements

Work in the EC laboratory is supported by the Centre National de la Recherche Scientifique, the Aix-Marseille Université, and grants from the Agence Nationale de la Recherche (ANR-14-CE14-0006-02 and ANR-15-CE11-0019-01). LL and AZ are recipients of doctoral fellowships from the French Ministère de l’Enseignement Supérieur et de la Recherche and end-of-thesis fellowships from the Fondation pour la Recherche Médicale (FDT20160435498 and FDT20140931060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Cascales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Logger, L., Zoued, A., Cascales, E. (2017). Fusion Reporter Approaches to Monitoring Transmembrane Helix Interactions in Bacterial Membranes. In: Journet, L., Cascales, E. (eds) Bacterial Protein Secretion Systems. Methods in Molecular Biology, vol 1615. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7033-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7033-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7031-5

  • Online ISBN: 978-1-4939-7033-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics