Skip to main content

ChIP Technique to Study Protein Dynamics at Defined DNA Double Strand Breaks

  • Protocol
  • First Online:
ATM Kinase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1599))

Abstract

Information about the timing of appearance and composition of protein aggregates, termed foci, that arise in eukaryotic cells at sites of DNA double strand breaks (DSBs) has been mainly obtained through immunostaining and thus is limited by the resolution of light microscopy and the availability of appropriate antibodies. In this chapter, we describe a system using direct protein transduction of homing endonuclease, I-PpoI, into human cells to generate site-specific DSBs, allowing for detection of target proteins using chromatin immunoprecipitation (ChIP), enabling molecular probing of the cellular response to a DNA DSB. Following the introduction of I-PpoI and generation of DSBs, genomic DNA and protein are cross-linked and analyzed by ChIP to determine the spatial distribution and temporal accumulation of specific proteins at the site of breaks. Direct transduction of I-PpoI protein results in rapid accumulation and turnover of I-PpoI in live cells, facilitating comparisons across multiple cell lines. This system allows the direct detection of protein and chromatin dynamics at the site of the break, as well as timing and extent of DNA DSB repair in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  2. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173(2):195–206. doi:10.1083/jcb.200510130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5(3):255–260

    Article  CAS  PubMed  Google Scholar 

  4. Demuth I, Bradshaw PS, Lindner A, Anders M, Heinrich S, Kallenbach J, Schmelz K, Digweed M, Meyn MS, Concannon P (2008) Endogenous hSNM1B/Apollo interacts with TRF2 and stimulates ATM in response to ionizing radiation. DNA Repair (Amst) 7(8):1192–1201. doi:10.1016/j.dnarep.2008.03.020. S1568-7864(08)00130-4 [pii]

    Article  CAS  Google Scholar 

  5. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91(13):6064–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC, Jasin M, Masson JY (2006) Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J 25(1):222–231. doi:10.1038/sj.emboj.7600914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Monnat RJ Jr, Hackmann AF, Cantrell MA (1999) Generation of highly site-specific DNA double-strand breaks in human cells by the homing endonucleases I-PpoI and I-CreI. Biochem Biophys Res Commun 255(1):88–93. doi:10.1006/bbrc.1999.0152. S0006-291X(99)90152-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Berkovich E, Monnat RJ Jr, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9(6):683–690. doi:10.1038/ncb1599

    Article  CAS  PubMed  Google Scholar 

  10. Massip L, Caron P, Iacovoni JS, Trouche D, Legube G (2010) Deciphering the chromatin landscape induced around DNA double strand breaks. Cell Cycle 9(15):2963–2972. doi:10.4161/cc.9.15.12412, 10.4161/cc.9.15.12697

    Google Scholar 

  11. Wen J, Cerosaletti K, Schultz KJ, Wright JA, Concannon P (2013) NBN phosphorylation regulates the accumulation of MRN and ATM at sites of DNA double-strand breaks. Oncogene 32(37):4448–4456. doi:10.1038/onc.2012.443

    Article  CAS  PubMed  Google Scholar 

  12. Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G (2001) Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 276(41):38224–38230

    CAS  PubMed  Google Scholar 

  13. Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405(6785):473–477

    Article  CAS  PubMed  Google Scholar 

  14. Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P, Khanna K (2000) ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25(1):115–119

    Article  CAS  PubMed  Google Scholar 

  15. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404(6778):613–617

    Article  CAS  PubMed  Google Scholar 

  16. Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O’Neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G, Livingston DM, Weaver DT (2000) ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405(6785):477–482

    Article  CAS  PubMed  Google Scholar 

  17. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanova E, Cooper PR, Nowak NJ, Stumm M, Weemaes CMR, Gatti RA, Wilson RK, Digweed M, Rosenthal A, Sperling K, Concannon P, Reis A (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93(3):467–476. doi:10.1016/S0092-8674(00)81174-5

    Article  CAS  PubMed  Google Scholar 

  18. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93(3):477–486

    Article  CAS  PubMed  Google Scholar 

  19. Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434(7033):605–611

    Article  CAS  PubMed  Google Scholar 

  20. Cerosaletti K, Wright J, Concannon P (2006) Active role for nibrin in the kinetics of atm activation. Mol Cell Biol 26(5):1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lavin MF, Kozlov S, Gatei M, Kijas AW (2015) ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules 5(4):2877–2902. doi:10.3390/biom5042877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Concannon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wen, J., Concannon, P. (2017). ChIP Technique to Study Protein Dynamics at Defined DNA Double Strand Breaks. In: Kozlov, S. (eds) ATM Kinase. Methods in Molecular Biology, vol 1599. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6955-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6955-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6953-1

  • Online ISBN: 978-1-4939-6955-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics