Skip to main content

Catalytic Amyloid Fibrils That Bind Copper to Activate Oxygen

  • Protocol
  • First Online:
Synthetic Protein Switches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1596))

Abstract

Amyloid-like fibrils assembled from de novo designed peptides lock ligands in a conformation optimal for metal binding and catalysis in a manner similar to how metalloenzymes provide proper coordination environment through fold. These supramolecular assemblies efficiently catalyze p-nitrophenyl ester hydrolysis in the presence of zinc and phenol oxidation by dioxygen in the presence of copper. The resulting heterogeneous catalysts are inherently switchable, as addition and removal of the metal ions turns the catalytic activity on and off, respectively. The ease of peptide preparation and self-assembly makes amyloid-like fibrils an attractive platform for developing catalysts for a broad range of chemical reactions. Here, we present a detailed protocol for the preparation of copper-containing fibrils and for kinetic characterization of their abilities to oxidize phenols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  Google Scholar 

  2. Wallar BJ, Lipscomb JD (1996) Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev 96(7):2625–2658

    Article  CAS  Google Scholar 

  3. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed Engl 40:2782–2807

    Article  CAS  Google Scholar 

  4. Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  Google Scholar 

  5. Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, billirubin oxidase, and laccase. Chem Rec 7(4):220–229

    Article  CAS  Google Scholar 

  6. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL (2014) Protein design: toward functional metalloenzymes. Chem Rev 114:3495–3578

    Article  CAS  Google Scholar 

  7. Rufo CM, Moroz YS, Moroz OV, Stöhr J, Smith TA, Hu X, DeGrado WF, Korendovych IV (2014) Short peptides self-assemble to produce catalytic amyloids. Nat Chem 6:303–309

    Article  CAS  Google Scholar 

  8. Friedmann MP, Torbeev V, Zelenay V, Sobol A, Greenwald J, Riek R (2015) Towards prebiotic catalytic amyloids using high hroughput screening. PLoS One 10:e0143948

    Article  Google Scholar 

  9. Maeda Y, Makhlynets OV, Matsui H, Korendovych IV (2016) Design of catalytic peptides and proteins through rational and combinatorial approaches. Annu Rev Biomed Eng 18:311–328

    Article  CAS  Google Scholar 

  10. Makhlynets OV, Gosavi PM, Korendovych IV (2016) Short self-assembling peptides are able to bind to copper and activate oxygen. Angew Chem Int Ed Engl 55(31):9017–9020

    Google Scholar 

  11. Rasik CM, Brown MK (2014) Total synthesis of gracilioether F: development and application of Lewis acid promoted ketene-alkene [2+2] cycloadditions and late-stage C-H oxidation. Angew Chem Int Ed Engl 53:14522–14526

    Article  CAS  Google Scholar 

  12. Punniyamurthy T, Rout L (2008) Recent advances in copper-catalyzed oxidation of organic compounds. Coord Chem Rev 252:134–154

    Article  CAS  Google Scholar 

  13. Ikeda R, Sugihara J, Uyama H, Kobayashi S (1996) Enzymatic oxidative polymerization of 2,6-dimethylphenol. Macromolecules 29:8702–8705

    Article  CAS  Google Scholar 

  14. Baesjou PJ, Driessen WL, Challa G, Reedijk J (1998) A kinetic study of the copper-catalyzed oxidative coupling of 2,6-dimethylphenol. The role of copper, base and phenol concentrations. J Mol Catal A: Chem 135:273–283

    Article  CAS  Google Scholar 

  15. Cassagnes L-E, Hervé V, Nepveu F, Hureau C, Faller P, Collin F (2013) The catalytically active copper-amyloid-beta state: coordination site responsible for reactive species production. Angew Chem Int Ed Engl 52:11110–11113

    Article  CAS  Google Scholar 

  16. Solano F, Lucas-Elío P, López-Serrano D, Fernández E, Sanchez-Amat A (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 204:175–181

    Article  CAS  Google Scholar 

  17. Mattinen M-L, Maijala P, Nousiainen P, Smeds A, Kontro J, Sipilä J, Tamminen T, Willför S, Viikari L (2011) Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systems. J Mol Catal B: Enzym 72:122–129

    Article  CAS  Google Scholar 

  18. Wan Y, Du Y, Miyakoshi T (2008) Enzymatic catalysis of 2,6-dimethoxyphenol by laccases and products characterization in organic solutions. Sci China Ser B: Chem 51(7):669–676

    Article  CAS  Google Scholar 

  19. Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8(6):e65633

    Article  CAS  Google Scholar 

  20. Korendovych IV, Kim YH, Ryan AH, Lear JD, DeGrado WF, Shandler SJ (2010) Computational design of a self-assembling beta-peptide oligomer. Org Lett 12(22):5142–5145

    Article  CAS  Google Scholar 

  21. Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T (2007) Structure and function of the engineered multicopper oxidase CueO from Escherichia coli—deletion of the methionine-rich helical region covering the substrate-binding binding site. J Mol Biol 373:141–152

    Article  CAS  Google Scholar 

  22. Kuipers BJH, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem 55:5445–5451

    Article  CAS  Google Scholar 

  23. Hitchman ML (1978) Measurement of dissolved oxygen. Wiley, New York

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the NSF ADVANCE (HRD-1008643) fellowship to O.V.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Makhlynets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sternisha, A., Makhlynets, O. (2017). Catalytic Amyloid Fibrils That Bind Copper to Activate Oxygen. In: Stein, V. (eds) Synthetic Protein Switches. Methods in Molecular Biology, vol 1596. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6940-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6940-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6938-8

  • Online ISBN: 978-1-4939-6940-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics