Skip to main content

Techniques for Simultaneous Mitochondrial and Cytosolic Ca2+ Imaging in Neurons

  • Protocol
  • First Online:
Techniques to Investigate Mitochondrial Function in Neurons

Part of the book series: Neuromethods ((NM,volume 123))

Abstract

Mitochondria efficiently buffer Ca2+ influx during excitation, which limits the amplitude of cytosolic Ca2+ rise, and then slowly release Ca2+ back into the cytosol thereby extending the duration of cytosolic Ca2+ response. This mitochondrial Ca2+ cycling helps shape Ca2+ transients and regulates Ca2+-dependent functions in neurons such as excitability, synaptic plasticity, bioenergetics, and survival. Therefore identifying the molecular components of mitochondrial Ca2+ transport in neurons and defining their pharmacological and functional properties presents an important and challenging task for neuroscientists. Fulfilling this task requires a set of tools for simple and reliable measurement of Ca2+ concentration inside and outside mitochondria, i.e., within the mitochondrial matrix and cytosol, respectively. In this chapter we describe instrumentation and techniques for simultaneous measurements of mitoc hondrial and cytosolic Ca2+ concentration in central and peripheral neurons by using synthetic (e.g., Fura-2 ) and genetic (e.g., mito-R-GECO1 ) fluorescent Ca2+ indicators. We include detailed protocols for preparing primary cultures of hippocampal and dorsal root ganglion (DRG) sensory neurons, gene transfer into these cells and the use of fluorescent microscopy and patch clam p for comprehensive characterization of Ca2+ fluxes across the mitochondrial and plasma membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colegrove SL, Albrecht MA, Friel DD (2000) Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+]i elevations in sympathetic neurons. J Gen Physiol 115(3):351–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Medvedeva YV, Kim MS, Usachev YM (2008) Mechanisms of prolonged presynaptic Ca2+ signaling and glutamate release induced by TRPV1 activation in rat sensory neurons. J Neurosci 28(20):5295–5311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friel DD (2000) Mitochondria as regulators of stimulus-evoked calcium signals in neurons. Cell Calcium 28(5-6):307–316

    Article  CAS  PubMed  Google Scholar 

  4. Thayer SA, Usachev YM, Pottorf WJ (2002) Modulating Ca2+ clearance from neurons. Front Biosci 7:D1255–D1279

    CAS  PubMed  Google Scholar 

  5. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3-4):311–317

    Article  CAS  PubMed  Google Scholar 

  6. Usachev YM (2015) Mitochondrial Ca2+ transport in the control of neuronal functions: molecular and cellular mechanisms. In: Hardwick JM, Gribkoff VK, Jonas EA (eds) The functions, disease-related dysfunctions, and therapeutic targeting of neuronal mitochondria. Wiley, New York, pp 103–129

    Google Scholar 

  7. David G, Barrett EF (2000) Stimulation-evoked increases in cytosolic [Ca2+] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature- dependent. J Neurosci 20(19):7290–7296

    CAS  PubMed  Google Scholar 

  8. Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci. 22(14):5840–5847

    CAS  PubMed  Google Scholar 

  9. Tang YG, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18(3):483–491

    Article  CAS  PubMed  Google Scholar 

  10. Jonas E (2004) Regulation of synaptic transmission by mitochondrial ion channels. J Bioenerg Biomembr 36(4):357–361

    Article  CAS  PubMed  Google Scholar 

  11. Jonas EA, Buchanan J, Kaczmarek LK (1999) Prolonged activation of mitochondrial conductances during synaptic transmission. Science 286(5443):1347–1350

    Article  CAS  PubMed  Google Scholar 

  12. Kim MS, Usachev YM (2009) Mitochondrial Ca2+ cycling facilitates activation of the transcription factor NFAT in sensory neurons. J Neurosci 29(39):12101–12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, Tsien RW (2012) Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 149(5):1112–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hajnoczky G, Robb GL, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3):415–424

    Article  CAS  PubMed  Google Scholar 

  15. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316

    Article  CAS  PubMed  Google Scholar 

  16. Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51(14):2959–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reynolds IJ (1999) Mitochondrial membrane potential and the permeability transition in excitotoxicity. Ann NY Acad Sci 893:33–41

    Article  CAS  PubMed  Google Scholar 

  18. Murphy AN, Fiskum G, Beal MF (1999) Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab 19(3):231–245

    Article  CAS  PubMed  Google Scholar 

  19. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80(1):315–360

    CAS  PubMed  Google Scholar 

  20. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5(8):731–736

    CAS  PubMed  Google Scholar 

  21. Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15(3):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79(4):1127–1155

    CAS  PubMed  Google Scholar 

  24. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578

    Article  CAS  PubMed  Google Scholar 

  25. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364

    Article  CAS  PubMed  Google Scholar 

  26. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, Chou JJ (2016) Architecture of the mitochondrial calcium uniporter. Nature 533(7602):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabo I, Rizzuto R (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32(17):2362–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342(6164):1379–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467(7313):291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, Taneja N, Oshea J, Koteliansky V, Mootha VK (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One 8(2):e55785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mallilankaraman K, Cardenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, Golenar T, Csordas G, Madireddi P, Yang J, Muller M, Miller R, Kolesar JE, Molgo J, Kaufman B, Hajnoczky G, Foskett JK, Madesh M (2012) MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14(12):1336–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomar D, Dong Z, Shanmughapriya S, Koch DA, Thomas T, Hoffman NE, Timbalia SA, Goldman SJ, Breves SL, Corbally DP, Nemani N, Fairweather JP, Cutri AR, Zhang X, Song J, Jana F, Huang J, Barrero C, Rabinowitz JE, Luongo TS, Schumacher SM, Rockman ME, Dietrich A, Merali S, Caplan J, Stathopulos P, Ahima RS, Cheung JY, Houser SR, Koch WJ, Patel V, Gohil VM, Elrod JW, Rajan S, Madesh M (2016) MCUR1 is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics. Cell Rep 15(8):1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamer KJ, Mootha VK (2014) MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep 15(3):299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patron M, Checchetto V, Raffaello A, Teardo E, Vecellio Reane D, Mantoan M, Granatiero V, Szabo I, De Stefani D, Rizzuto R (2014) MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol Cell 53(5):726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsai MF, Phillips CB, Ranaghan M, Tsai CW, Wu Y, Willliams C, Miller C (2016) Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex. Elife 5

    Google Scholar 

  38. Vais H, Mallilankaraman K, Mak DO, Hoff H, Payne R, Tanis JE, Foskett JK (2016) EMRE is a matrix Ca(2+) sensor that governs gatekeeping of the mitochondrial Ca(2+) uniporter. Cell Rep 14(3):403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA (2015) CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab 21(1):109–116

    Article  CAS  PubMed  Google Scholar 

  40. Chaudhuri D, Artiga DJ, Abiria SA, Clapham DE (2016) Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proc Natl Acad Sci U S A 113(13):E1872–E1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277(18):3622–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107(1):436–441

    Article  CAS  PubMed  Google Scholar 

  43. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326(5949):144–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang D, Zhao L, Clish CB, Clapham DE (2013) Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf-Hirschhorn syndrome. Proc Natl Acad Sci U S A 110(24):E2249–E2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doonan PJ, Chandramoorthy HC, Hoffman NE, Zhang X, Cardenas C, Shanmughapriya S, Rajan S, Vallem S, Chen X, Foskett JK, Cheung JY, Houser SR, Madesh M (2014) LETM1-dependent mitochondrial Ca2+ flux modulates cellular bioenergetics and proliferation. FASEB J 28(11):4936–4949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279(29):30307–30315

    Article  CAS  PubMed  Google Scholar 

  47. Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1. J Gen Physiol 139(6):445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. David G, Talbot J, Barrett EF (2003) Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals. Cell Calcium 33(3):197–206

    Article  CAS  PubMed  Google Scholar 

  49. Fonteriz RI, de la Fuente S, Moreno A, Lobaton CD, Montero M, Alvarez J (2010) Monitoring mitochondrial [Ca(2+)] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium 48(1):61–69

    Article  CAS  PubMed  Google Scholar 

  50. Davidson SM, Duchen MR (2012) Imaging mitochondrial calcium signalling with fluorescent probes and single or two photon confocal microscopy. Methods Mol Biol 810:219–234

    Article  CAS  PubMed  Google Scholar 

  51. Trollinger DR, Cascio WE, Lemasters JJ (2000) Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca2+−indicating fluorophores. Biophys J 79(1):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rizzuto R, Simpson AWM, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  CAS  PubMed  Google Scholar 

  53. Brini M (2008) Calcium-sensitive photoproteins. Methods 46(3):160–166

    Article  CAS  PubMed  Google Scholar 

  54. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885

    Article  CAS  PubMed  Google Scholar 

  55. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  CAS  PubMed  Google Scholar 

  56. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96(20):11241–11246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+−dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence—a new class of fluorescent indicators. J Biol Chem 272(20):13270–13,274

    Article  CAS  PubMed  Google Scholar 

  58. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98(6):3197–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141

    Article  CAS  PubMed  Google Scholar 

  60. Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1(3):1057–1065

    Article  CAS  PubMed  Google Scholar 

  61. Perez Koldenkova V, Nagai T (2013) Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim Biophys Acta 1833(7):1787–1797

    Article  CAS  PubMed  Google Scholar 

  62. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13(5):521–530

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333(6051):1888–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev YM, Taylor CW, Campbell RE (2014) Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 464:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schuler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kugler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci. 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, Fujii H, Kamijo S, Takemoto-Kimura S, Kano M, Nakai J, Kitamura K, Bito H (2015) Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12(1):64–70

    Article  CAS  PubMed  Google Scholar 

  69. Berlin S, Carroll EC, Newman ZL, Okada HO, Quinn CM, Kallman B, Rockwell NC, Martin SS, Lagarias JC, Isacoff EY (2015) Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat Methods 12(9):852–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rose T, Goltstein PM, Portugues R, Griesbeck O (2014) Putting a finishing touch on GECIs. Front Mol Neurosci 7:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Pendin D, Greotti E, Filadi R, Pozzan T (2015) Spying on organelle Ca(2)(+) in living cells: the mitochondrial point of view. J Endocrinol Invest 38(1):39–45

    Article  CAS  PubMed  Google Scholar 

  72. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  73. Cobbold PH, Rink TJ (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J 248:313–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shuttleworth TJ, Thompson JL (1991) Effect of temperature on receptor-activated changes in [Ca2+]i and their determination using fluorescent probes. J Biol Chem 266(3):1410–1414

    CAS  PubMed  Google Scholar 

  75. Yuste R, Lanni F, Konnerth A (2000) Imagins neurons: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  76. Hamel EJ, Grewe BF, Parker JG, Schnitzer MJ (2015) Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86(1):140–159

    Article  CAS  PubMed  Google Scholar 

  77. Ji N, Freeman J, Smith SL (2016) Technologies for imaging neural activity in large volumes. Nat Neurosci 19(9):1154–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Thayer SA, Sturek M, Miller RJ (1988) Measurement of neuronal Ca2+ transients using simultaneous microfluorimetry and electrophysiology. Pflugers Arch 412:216–223

    Article  CAS  PubMed  Google Scholar 

  79. Hille B (ed) (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, MA, p 814

    Google Scholar 

  80. Shutov LP, Kim MS, Houlihan PR, Medvedeva YV, Usachev YM (2013) Mitochondria and plasma membrane Ca2+−ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J Physiol 591(Pt 10):2443–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thayer SA, Miller RJ (1990) Regulation of the free intracellular calcium concentration in rat dorsal root ganglion neurones in vitro. J Physiol 425:85–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Usachev YM, Thayer SA (1997) All-or-none Ca2+ release from intracellular stores triggered by Ca2+ influx through voltage-gated Ca2+ channels in rat sensory neurons. J Neurosci 17(19):7404–7414

    CAS  PubMed  Google Scholar 

  83. Lu Y, Zhang M, Lim IA, Hall DD, Allen M, Medvedeva Y, McKnight GS, Usachev YM, Hell JW (2008) AKAP150-anchored PKA activity is important for LTD during its induction phase. J Physiol 586(Pt 17):4155–4164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Medvedeva YV, Kim MS, Schnizler K, Usachev YM (2009) Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons. Neuroscience 159(2):559–569

    Article  CAS  PubMed  Google Scholar 

  85. Garaschuk O, Schneggenburger R, Schirra C, Tempia F, Konnerth A (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J Physiol 491(Pt 3):757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kauffman RF, Taylor RW, Pfeiffer DR (1980) Cation transport and specificity of ionomycin. Comparison with ionophore A23187 in rat liver mitochondria. J Biol Chem 255(7):2735–2739

    CAS  PubMed  Google Scholar 

  87. Helmchen F (2000) Calibration of fluorescent calcium indicators. In: Yuste R, Lanni F, Konnerth A (eds) Imaging neurons. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 32.1–32.9

    Google Scholar 

  88. Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN (1992) Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation. J Neurophysiol 68(4):1167–1177

    CAS  PubMed  Google Scholar 

  89. Babcock DF, Hille B (1998) Mitochondrial oversight of cellular Ca2+ signaling. Curr Opin Neurobiol 8(3):398–404

    Article  CAS  PubMed  Google Scholar 

  90. David G (1999) Mitochondrial clearance of cytosolic Ca2+ in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca2+]. J Neurosci 19(17):7495–7506

    CAS  PubMed  Google Scholar 

  91. Pivovarova NB, Hongpaisan J, Andrews SB, Friel DD (1999) Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J Neurosci 19(15):6372–6384

    CAS  PubMed  Google Scholar 

  92. Stanika RI, Villanueva I, Kazanina G, Andrews SB, Pivovarova NB (2012) Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury. J Neurosci 32(19):6642–6650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, Usachev YM, Strack S (2011) Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS biology 9(4):e1000612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Usachev YM, Khammanivong A, Campbell C, Thayer SA (2000) Particle-mediated gene transfer to rat neurons in primary culture. Pflugers Arch 439(6):730–738

    Article  CAS  PubMed  Google Scholar 

  95. Filippin L, Magalhaes PJ, Di Benedetto G, Colella M, Pozzan T (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 278(40):39224–39234

    Article  CAS  PubMed  Google Scholar 

  96. Kettlewell S, Cabrero P, Nicklin SA, Dow JA, Davies S, Smith GL (2009) Changes of intra-mitochondrial Ca2+ in adult ventricular cardiomyocytes examined using a novel fluorescent Ca2+ indicator targeted to mitochondria. J Mol Cell Cardiol 46(6):891–901

    Article  CAS  PubMed  Google Scholar 

  97. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101(50):17404–17409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jean-Quartier C, Bondarenko AI, Alam MR, Trenker M, Waldeck-Weiermair M, Malli R, Graier WF (2012) Studying mitochondrial Ca(2+) uptake—a revisit. Mol Cell Endocrinol 353(1-2):114–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiu J, Tan YW, Hagenston AM, Martel MA, Kneisel N, Skehel PA, Wyllie DJ, Bading H, Hardingham GE (2013) Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 4:2034

    PubMed  PubMed Central  Google Scholar 

  100. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103(12):4753–4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marland JR, Hasel P, Bonnycastle K, Cousin MA (2016) Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals. J Biol Chem 291(5):2080–2086

    Article  PubMed  CAS  Google Scholar 

  102. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li H, Wang X, Zhang N, Gottipati MK, Parpura V, Ding S (2014) Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6 s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium 56(6):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NINDS grants NS087068 and NS096246. J.E.R. was supported by a predoctoral fellowship through the American Heart Association, Midwest Affiliate Grant 15PRE25310013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy M. Usachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rysted, J.E., Lin, Z., Usachev, Y.M. (2017). Techniques for Simultaneous Mitochondrial and Cytosolic Ca2+ Imaging in Neurons. In: Strack, S., Usachev, Y. (eds) Techniques to Investigate Mitochondrial Function in Neurons. Neuromethods, vol 123. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6890-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6890-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6888-6

  • Online ISBN: 978-1-4939-6890-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics