Skip to main content
Log in

Spying on organelle Ca2+ in living cells: the mitochondrial point of view

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Over the past years, the use of genetically encoded Ca2+ indicators (GECIs), derived from aequorin and green fluorescent protein, has profoundly transformed the study of Ca2+ homeostasis in living cells leading to novel insights into functional aspects of Ca2+ signalling. Particularly relevant for a deeper understanding of these key aspects of cell pathophysiology has been the possibility of imaging changes in Ca2+ concentration not only in the cytoplasm, but also inside organelles. In this review, we will provide an overview of the ongoing developments in the use of GECIs, with particular focus on mitochondrially targeted probes. Indeed, due to recent advances in organelle Ca2+ imaging with GECIs, mitochondria are now at the centre of renewed interest: they play key roles both in the physiology of the cell and in multiple pathological conditions relevant to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paredes RM et al (2008) Chemical calcium indicators. Methods 46(3):143–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  3. Rehberg M et al (2008) A new non-disruptive strategy to target calcium indicator dyes to the endoplasmic reticulum. Cell Calcium 44(4):386–399

    Article  CAS  PubMed  Google Scholar 

  4. Mank M et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5(9):805–811

    Article  CAS  PubMed  Google Scholar 

  5. Allen DG, Blinks JR, Prendergast FG (1977) Aequorin luminescence: relation of light emission to calcium concentration–a calcium-independent component. Science 195(4282):996–998

    Article  CAS  PubMed  Google Scholar 

  6. Brini M et al (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). A critical evaluation. J Biol Chem 270(17):9896–9903

    Article  CAS  PubMed  Google Scholar 

  7. Rizzuto R et al (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358(6384):325–327

    Article  CAS  PubMed  Google Scholar 

  8. Rizzuto R et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766

    Article  CAS  PubMed  Google Scholar 

  9. Bonora M et al (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8(11):2105–2118

    Article  CAS  PubMed  Google Scholar 

  10. Baubet V et al (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97(13):7260–7265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rodriguez-Garcia A et al (2014) GAP, an aequorin-based fluorescent indicator for imaging Ca2+ in organelles. Proc Natl Acad Sci USA 111(7):2584–2589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96(20):11241–11246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Griesbeck O et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  CAS  PubMed  Google Scholar 

  14. Nagai T et al (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98(6):3197–3202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kettlewell S et al (2009) Changes of intra-mitochondrial Ca2+ in adult ventricular cardiomyocytes examined using a novel fluorescent Ca2+ indicator targeted to mitochondria. J Mol Cell Cardiol 46(6):891–901

    Article  CAS  PubMed  Google Scholar 

  16. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141

    Article  CAS  PubMed  Google Scholar 

  17. Chen TW et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Akerboom J et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Miyawaki A et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  CAS  PubMed  Google Scholar 

  20. Persechini A, Lynch JA, Romoser VA (1997) Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. Cell Calcium 22(3):209–216

    Article  CAS  PubMed  Google Scholar 

  21. Nagai T et al (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101(29):10554–10559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Palmer AE et al (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13(5):521–530

    Article  CAS  PubMed  Google Scholar 

  23. Horikawa K et al (2010) Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nat Methods 7(9):729–732

    Article  CAS  PubMed  Google Scholar 

  24. Evanko DS, Haydon PG (2005) Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 37(4):341–348

    Article  CAS  PubMed  Google Scholar 

  25. Truong K et al (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 8(12):1069–1073

    Article  CAS  PubMed  Google Scholar 

  26. Whitaker M (2010) Genetically encoded probes for measurement of intracellular calcium. Methods Cell Biol 99:153–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kipanyula MJ et al (2012) Ca2+ dysregulation in neurons from transgenic mice expressing mutant presenilin 2. Aging Cell 11(5):885–893

    Article  CAS  PubMed  Google Scholar 

  28. Wong AK et al (2013) Heterogeneity of Ca2+ handling among and within Golgi compartments. J Mol Cell Biol 5(4):266–276

    Article  CAS  PubMed  Google Scholar 

  29. Lissandron V et al (2010) Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci USA 107(20):9198–9203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Giacomello M et al (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38(2):280–290

    Article  CAS  PubMed  Google Scholar 

  31. Deluca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47:1744–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vasington FD, Murphy JV (1962) Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem 237:2670–2677

    CAS  PubMed  Google Scholar 

  33. Lehninger AL, Rossi CS, Greenawalt JW (1963) Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat liver mitochondria. Biochem Biophys Res Commun 10:444–448

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell P, Moyle J (1967) Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213(5072):137–139

    Article  CAS  PubMed  Google Scholar 

  35. De Stefani D et al (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  PubMed Central  PubMed  Google Scholar 

  36. Baughman JM et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Rizzuto R et al (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262(5134):744–747

    Article  CAS  PubMed  Google Scholar 

  38. Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18(1):96–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Marchi S, Pinton P (2014) The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592(Pt 5):829–839

    Article  CAS  PubMed  Google Scholar 

  40. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316

    Article  CAS  PubMed  Google Scholar 

  41. Cardenas C et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Di Benedetto G et al (2013) Mitochondrial Ca(2)(+) uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab 17(6):965–975

    Article  PubMed  Google Scholar 

  43. Pinton P et al (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. De Marchi E et al (2014) The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56(1):1–13

    Article  PubMed Central  PubMed  Google Scholar 

  45. Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50(3):222–233

    Article  CAS  PubMed  Google Scholar 

  46. Tinel H et al (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J 18(18):4999–5008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mehlmer N et al (2012) A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. J Exp Bot 63(4):1751–1761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Loro G et al (2013) The D3cpv Cameleon reports Ca(2)(+) dynamics in plant mitochondria with similar kinetics of the YC3.6 Cameleon, but with a lower sensitivity. J Microsc 249(1):8–12

    Article  CAS  PubMed  Google Scholar 

  49. Loro G et al (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca(2)(+) handling relationship in plant cells. Plant J 71(1):1–13

    Article  CAS  PubMed  Google Scholar 

  50. Chouhan AK et al (2010) Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J Neurosci 30(5):1869–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ivannikov MV, Macleod GT (2013) Mitochondrial free Ca(2)(+) levels and their effects on energy metabolism in Drosophila motor nerve terminals. Biophys J 104(11):2353–2361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Mizuno H et al (2013) Transgenic zebrafish for ratiometric imaging of cytosolic and mitochondrial Ca2+ response in teleost embryo. Cell Calcium 54(3):236–245

    Article  CAS  PubMed  Google Scholar 

  53. Rogers KL et al (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2(10):e974

    Article  PubMed Central  PubMed  Google Scholar 

  54. Rudolf R et al (2004) In vivo monitoring of Ca(2+) uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166(4):527–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Scorzeto M et al (2013) Mitochondrial Ca2+-handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice. PLoS One 8(10):e74919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Montero M et al (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61

    Article  CAS  PubMed  Google Scholar 

  57. Pinton P et al (2002) Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. J Biol Chem 277(40):37702–37710

    Article  CAS  PubMed  Google Scholar 

  58. Brandenburger Y et al (1999) Measurement of perimitochondrial Ca2+ concentration in bovine adrenal glomerulosa cells with aequorin targeted to the outer mitochondrial membrane. Biochem J 341(Pt 3):745–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Jasoni CL et al (2007) Cell type-specific expression of a genetically encoded calcium indicator reveals intrinsic calcium oscillations in adult gonadotropin-releasing hormone neurons. J Neurosci 27(4):860–867

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Paulo Magalhães for critically reading the manuscript. The original work by the group was supported by grant FIRB from the Italian Ministry of University and Research (MIUR), by the Veneto Region “RISIB” and “Vegecell” projects, by the National Research Council (CNR) “Ageing” and “Eurobioimaging” projects to T.P.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pendin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendin, D., Greotti, E., Filadi, R. et al. Spying on organelle Ca2+ in living cells: the mitochondrial point of view. J Endocrinol Invest 38, 39–45 (2015). https://doi.org/10.1007/s40618-014-0178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0178-2

Keywords

Navigation