Skip to main content

Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters

  • Protocol
  • First Online:
MicroRNA Detection and Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1580))

Abstract

Small RNAs (sRNAs) as key regulators of gene expression play fundamental roles in many biological processes. Next-generation sequencing (NGS) has become an important tool for sRNA discovery and profiling. However, NGS data often show bias for or against certain sequences which is mainly caused by adapter oligonucleotides that are ligated to sRNAs more or less efficiently by RNA ligases. In order to reduce ligation bias, High-definition (HD) adapters for the Illumina sequencing platform were developed. However, a large amount of direct 5′ and 3′ adapter ligation products are often produced when the current commercially available kits are used for cloning with HD adapters. In this chapter we describe a protocol for sRNA library construction using HD adapters with drastically reduced direct 5′ adapter–3′ adapter ligation product. The protocol can be used for sRNA library preparation from total RNA or sRNA of various plant, animal, insect, or fungal samples. The protocol includes total RNA extraction from plant leaf tissue and cultured mammalian cells and sRNA library construction using HD adapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  2. Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135(7):1201–1214

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  4. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ho CK, Wang LK, Lima CD, Shuman S (2004) Structure and mechanism of RNA ligase. Structure 12(2):327–339

    Article  CAS  PubMed  Google Scholar 

  8. Viollet S, Fuchs RT, Munafo DB, Zhuang F, Robb GB (2011) T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol 11:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hafner M, Renwick N, Brown M, Mihailovic A, Holoch D, Lin C, Pena JT, Nusbaum JD, Morozov P, Ludwig J, Ojo T, Luo S, Schroth G, Tuschl T (2011) RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17(9):1697–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sorefan K, Pais H, Hall AE, Kozomara A, Griffiths-Jones S, Moulton V, Dalmay T (2012) Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 3(1):4. doi: 10.1186/1758-907X-3-4

  12. Zhang Z, Lee JE, Riemondy K, Anderson EM, Yi R (2013) High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol 14(10):R109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhuang F, Fuchs RT, Sun Z, Zheng Y, Robb GB (2012) Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res 40(7):e54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baran-Gale J, Erdos MR, Sison C, Young A, Fannin EE, Chines PS, Sethupathy P (2015) Addressing bias in small RNA library preparation for sequencing: a new protocol recovers microRNAs that evade capture by current methods. Front Genet 6:352 doi: 10.3389/fgene.2015.00352

  15. Tian G, Yin X, Luo H, Xu X, Bolund L, Zhang X, Gan SQ, Li N (2010) Sequencing bias: comparison of different protocols of microRNA library construction. BMC Biotechnol 10:64

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sun G, Wu X, Wang J, Li H, Li X, Gao H, Rossi J, Yen Y (2011) A bias-reducing strategy in profiling small RNAs using Solexa. RNA 17(12):2256–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pease J (2011) Small-RNA sequencing libraries with greatly reduced adaptor-dimer background. Nat Methods 8(3) Application Note, iii-iv

    Google Scholar 

  18. Vaidyanathan R, Kuersten S, Doyle K (2013) US Patent 20110104785 A1, 2011

    Google Scholar 

  19. Xu P, Billmeier M, Mohorianu I, Green D, Fraser WD, Dalmay T (2015) An improved protocol for small RNA library construction using High Definition adapters. Methods Next Generation Seq 2: 1–10

    Google Scholar 

  20. Xu P, Mohorianu I, Yang L, Zhao H, Gao Z, Dalmay T (2014) Small RNA profile in moso bamboo root and leaf obtained by high definition adapters. PLoS One 9(7):e103590

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  22. Lovett ST, Kolodner RD (1989) Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A 86(8):2627–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Billmeier, M., Xu, P. (2017). Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 1580. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6866-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6866-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6864-0

  • Online ISBN: 978-1-4939-6866-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics