Skip to main content

Crosslinking Methods to Identify RNA Methyltransferase Targets In Vivo

  • Protocol
  • First Online:
RNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1562))

Abstract

Several crosslinking methods have been developed to identify interacting RNAs for proteins of interest. Here, we describe variants of the UV crosslinking and analysis of cDNA (CRAC) method that allow target identification of RNA methyltransferases on a genome-wide scale. We present a detailed protocol for the application of CRAC in human cells that stably express the protein of interest fused to a tandem affinity tag. After the introduction of a covalent link between the protein and its target RNAs, protein-RNA complexes are purified and bound RNAs trimmed, ligated to adapters, reverse transcribed, and amplified. Sequences obtained from next-generation sequencing are then mapped onto the human genome allowing the identification of possible substrates. For some RNA methyltransferases, e.g., m5C MTases, their catalytic mechanism can be exploited for chemical crosslinking approaches instead of UV based crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrossian T, Clarke S (2009) Bioinformatic identification of novel methyltransferases. Epigenomics 1:163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Petrossian TC, Clarke SG (2011) Uncovering the human methyltransferasome. Mol Cell Proteomics 10:M110.000976

    Article  PubMed  Google Scholar 

  3. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  4. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. NatBiotechnol 29:607–614

    CAS  Google Scholar 

  6. Wang Z, Kayikci M, Briese M, Zarnack K, Luscombe NM, Rot G et al (2010) iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoSBiol 8:e1000530

    Article  Google Scholar 

  7. Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bohnsack MT, Tollervey D, Granneman S (2012) Identification of RNA helicase target sites by UV cross-linking and analysis of cDNA. Methods Enzymol 511:275–288

    Article  CAS  PubMed  Google Scholar 

  9. Grannemann S, Kudla G, Petfalski E, Tollervey D (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 106:9613–9618

    Article  Google Scholar 

  10. Granneman S, Petfalski E, Swiatkowska A, Tollervey D (2010) Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J 29:2026–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bohnsack MT, Martin R, Granneman S, Ruprecht M, Schleiff E, Tollervey D (2009) Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol Cell 36:583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin R, Hackert P, Ruprecht M, Simm S, Brüning L, Mirus O et al (2014) A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. RNA 20:1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sloan KE, Leisegang MS, Doebele C, Ramirez AS, Simm S, Safferthal C et al (2015) The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21. Nucleic Acids Res 43, 553–564.

    Google Scholar 

  14. Haag S, Warda AS, Kretschmer J, Günnigmann MA, Höbartner C, Bohnsack MT (2015) NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA 21:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Santi DV (2000) m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. Proc Natl Acad Sci U S A 97:8263–8265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. King MY, Redman KL (2002) RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine. Biochemistry 41:11218–11225

    Article  CAS  PubMed  Google Scholar 

  18. Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y et al (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haag S, Höbartner C, and Bohnsack MT (2016) In vitro assays for RNA methyltransferase activity. Methods Mol Biol, in this issue.

    Google Scholar 

  21. Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) Flexbar - flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895–905

    Article  PubMed  PubMed Central  Google Scholar 

  22. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. GenomeBiol 10:R25

    Google Scholar 

  23. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khorshid M, Rodak C, Zavolan M (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 39:D245–D252

    Article  CAS  PubMed  Google Scholar 

  26. Webb S, Hector RD, Kudla G, Granneman S (2014) PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol 15:R8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chi SW, Zang JB, Mele A, Darnell RB (2009) Ago HITS-CLIP decodes miRNA-mRNA interaction maps. Nature 460:479–486

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SPP 1784: BO3442/2-1 to M.T.B.), the Alexander von Humboldt Foundation (K.E.S. and M.T.B.), and the Faculty of Medicine, Georg-August-University Göttingen (M.T.B. and “Startförderung” to S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus T. Bohnsack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Haag, S., Kretschmer, J., Sloan, K.E., Bohnsack, M.T. (2017). Crosslinking Methods to Identify RNA Methyltransferase Targets In Vivo. In: Lusser, A. (eds) RNA Methylation. Methods in Molecular Biology, vol 1562. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6807-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6807-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6805-3

  • Online ISBN: 978-1-4939-6807-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics