Skip to main content

Isolation of Lipid Rafts Through Discontinuous Sucrose Gradient Centrifugation and Fas/CD95 Death Receptor Localization in Raft Fractions

  • Protocol
  • First Online:
CD95

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1557))

Abstract

Lipid raft domains, enriched in sphingolipids and cholesterol, serve as sorting platforms and hubs for signal transduction proteins, and show resistance to detergent solubilization. Despite rafts have been involved in survival processes, these membrane domains have also been shown to play a major role in the modulation of death receptor signaling. Here, we describe a detailed protocol for isolating lipid rafts from whole cells by taking advantage of the lipid raft resistance to Triton X-100 solubilization at 4 °C, followed by sucrose gradient centrifugation, with subsequent analysis of Fas/CD95 death receptor localization in the raft fractions by immunoblotting. This method is also useful to localize additional proteins in membrane rafts.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6780-3_22

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6780-3_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  2. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  3. Zajchowski LD, Robbins SM (2002) Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. Eur J Biochem 269:737–752

    Article  CAS  PubMed  Google Scholar 

  4. Mollinedo F, Gajate C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9:51–73

    Article  CAS  PubMed  Google Scholar 

  5. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  6. Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50(Suppl):S323–S328

    PubMed  PubMed Central  Google Scholar 

  7. Mollinedo F, Gajate C (2010) Lipid rafts and clusters of apoptotic signaling molecule-enriched rafts in cancer therapy. Future Oncol 6:811–821

    Article  CAS  PubMed  Google Scholar 

  8. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  CAS  PubMed  Google Scholar 

  9. Harder T, Engelhardt KR (2004) Membrane domains in lymphocytes—from lipid rafts to protein scaffolds. Traffic 5:265–275

    Article  CAS  PubMed  Google Scholar 

  10. Adam RM, Mukhopadhyay NK, Kim J, Di Vizio D, Cinar B, Boucher K, Solomon KR, Freeman MR (2007) Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 67:6238–6246

    Article  CAS  PubMed  Google Scholar 

  11. Gao X, Lowry PR, Zhou X, Depry C, Wei Z, Wong GW, Zhang J (2011) PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc Natl Acad Sci U S A 108:14509–14514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reis-Sobreiro M, Roue G, Moros A, Gajate C, de la Iglesia-Vicente J, Colomer D, Mollinedo F (2013) Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood Cancer J 3:e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mollinedo F, Gajate C (2015) Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57:130–146

    Article  CAS  PubMed  Google Scholar 

  14. Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98:3860–3863

    Article  CAS  PubMed  Google Scholar 

  15. Gajate C, Del Canto-Janez E, Acuna AU, Amat-Guerri F, Geijo E, Santos-Beneit AM, Veldman RJ, Mollinedo F (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200:353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719

    Article  CAS  PubMed  Google Scholar 

  17. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, Campanero MA, Blanco-Prieto MJ (2010) Lipid raft-targeted therapy in multiple myeloma. Oncogene 29:3748–3757

    Article  CAS  PubMed  Google Scholar 

  18. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, de Frias M, Roue G, Gil J, Colomer D, Campanero MA, Blanco-Prieto MJ (2010) In vitro and in vivo selective antitumor activity of Edelfosine against mantle cell lymphoma and chronic lymphocytic leukemia involving lipid rafts. Clin Cancer Res 16:2046–2054

    Article  CAS  PubMed  Google Scholar 

  19. Gajate C, Mollinedo F (2015) Lipid raft-mediated Fas/CD95 apoptotic signaling in leukemic cells and normal leukocytes and therapeutic implications. J Leukoc Biol 98:739–759

    Article  CAS  PubMed  Google Scholar 

  20. Gajate C, Mollinedo F (2005) Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280:11641–11647

    Article  CAS  PubMed  Google Scholar 

  21. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochem Biophys Res Commun 380:780–784

    Article  CAS  PubMed  Google Scholar 

  22. Mollinedo F, Gajate C (2010) Lipid rafts, death receptors and CASMERs: new insights for cancer therapy. Future Oncol 6:491–494

    Article  CAS  PubMed  Google Scholar 

  23. Gajate C, Mollinedo F (2015) Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 20:584–606

    Article  CAS  PubMed  Google Scholar 

  24. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS One 4:e5044

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reis-Sobreiro M, Gajate C, Mollinedo F (2009) Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene 28:3221–3234

    Article  CAS  PubMed  Google Scholar 

  26. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  27. London E, Brown DA (2000) Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508:182–195

    Article  CAS  PubMed  Google Scholar 

  28. Lingwood D, Simons K (2007) Detergent resistance as a tool in membrane research. Nat Protoc 2:2159–2165

    Article  CAS  PubMed  Google Scholar 

  29. Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA (1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273:1150–1157

    Article  CAS  PubMed  Google Scholar 

  31. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  CAS  PubMed  Google Scholar 

  32. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    Article  CAS  PubMed  Google Scholar 

  34. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 100:5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Radeva G, Sharom FJ (2004) Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochem J 380:219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mishra S, Joshi PG (2007) Lipid raft heterogeneity: an enigma. J Neurochem 103(Suppl 1):135–142

    Article  CAS  PubMed  Google Scholar 

  37. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heerklotz H, Szadkowska H, Anderson T, Seelig J (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 329:793–799

    Article  CAS  PubMed  Google Scholar 

  39. Ingelmo-Torres M, Gaus K, Herms A, Gonzalez-Moreno E, Kassan A, Bosch M, Grewal T, Tebar F, Enrich C, Pol A (2009) Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane. Biochem J 420:373–381

    Article  CAS  PubMed  Google Scholar 

  40. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

    CAS  PubMed  Google Scholar 

  41. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579

    Article  CAS  PubMed  Google Scholar 

  43. Schon A, Freire E (1989) Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry 28:5019–5024

    Article  CAS  PubMed  Google Scholar 

  44. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolf AA, Jobling MG, Wimer-Mackin S, Ferguson-Maltzman M, Madara JL, Holmes RK, Lencer WI (1998) Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 141:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Spanish Ministerio de Economia y Competitividad (SAF2014-59716-R), the Instituto de Salud Carlos III (RD12/0036/0065 from Red Temática de Investigación Cooperativa en Cáncer, cofunded by the European Regional Development Fund, ERDF, of the European Union), and the European Community’s Seventh Framework Programme FP7-2007-2013 (grant HEALTH-F2-2011-256986, PANACREAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Consuelo Gajate or Faustino Mollinedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gajate, C., Mollinedo, F. (2017). Isolation of Lipid Rafts Through Discontinuous Sucrose Gradient Centrifugation and Fas/CD95 Death Receptor Localization in Raft Fractions. In: Legembre, P. (eds) CD95. Methods in Molecular Biology, vol 1557. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6780-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6780-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6778-0

  • Online ISBN: 978-1-4939-6780-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics