Skip to main content

Assessment of Energy Metabolic Changes in Adipose Tissue-Derived Stem Cells

  • Protocol
  • First Online:
Adult Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1553))

Abstract

Adipose tissue-derived stem cells (ADSC) are promising candidates for therapeutic applications in cardiovascular regenerative medicine. By definition, the phenotype ADSCs, e.g., the ubiquitous secretion of growth factors, cytokines, and extracellular matrix components is not met in vivo, which renders ADSC a culture “artefact.” The medium constituents therefore impact the efficacy of ADSC. Little attention has been paid to the energy source in medium, i.e., glucose, which feeds the cell’s power plants: mitochondria. The role of mitochondria in stem cell biology goes beyond their function in ATP synthesis, because it includes cell signaling, reactive oxygen species (ROS) production, regulation of apoptosis, and aging. Appropriate application of ADSC for stem cells therapy of cardiovascular disease warrants knowledge of their mitochondrial phenotype and function. We discuss several methodologies for assessing ADSC mitochondrial function and structural changes under environmental cues, in particular, increased ROS caused by hyperglycemia.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6756-8_27

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  2. Parker AM, Katz AJ (2006) Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther 6:567–578

    Article  CAS  PubMed  Google Scholar 

  3. Choi HS, Kim HJ, Oh JH, Park HG, Ra JC, Chang KA et al (2015) Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson’s disease. Neurobiol Aging 36:2885–2892

    Article  CAS  PubMed  Google Scholar 

  4. Chang KA, Lee JH, Suh YH (2014) Therapeutic potential of human adipose-derived stem cells in neurological disorders. J Pharmacol Sci 126:293–301

    Article  CAS  PubMed  Google Scholar 

  5. Chang KA, Kim HJ, Joo Y, Ha S, Suh YH (2014) The therapeutic effects of human adipose-derived stem cells in Alzheimer’s disease mouse models. Neurodegener Dis 13:99–102

    Article  CAS  PubMed  Google Scholar 

  6. Mehrabani D, Babazadeh M, Tanideh N, Zare S, Hoseinzadeh S, Torabinejad S et al (2015) The healing effect of adipose-derived mesenchymal stem cells in full-thickness femoral articular cartilage defects of rabbit. Int J Organ Transplant Med 6:165–175

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu L, Cai X, Zhang S, Karperien M, Lin Y (2013) Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine. J Cell Physiol 228:938–944

    Article  CAS  PubMed  Google Scholar 

  8. Spiekman M, Przybyt E, Plantinga JA, Gibbs S, van der Lei B, Harmsen MC (2014) Adipose tissue-derived stromal cells inhibit TGF-beta1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion. Plast Reconstr Surg 134:699–712

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Qin F, Ge M, Shu Q, Xu J (2014) Application of adipose-derived stem cells in heart disease. J Cardiovasc Transl Res 7:651–663

    Article  PubMed  Google Scholar 

  10. Naaijkens BA, van Dijk A, Kamp O, Krijnen PA, Niessen HW, Juffermans LJ (2014) Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models. Stem Cell Rev 10:389–398

    CAS  PubMed  Google Scholar 

  11. Rajashekhar G, Ramadan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina C et al (2014) Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS One 9:e84671

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mendel TA, Clabough EB, Kao DS, Demidova-Rice TN, Durham JT, Zotter BC et al (2013) Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One 8:e65691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med (Berl) 88:981–986

    Article  Google Scholar 

  14. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua JC (2013) Belmonte. Mitochondrial regulation in pluripotent stem cells. Cell Metab 18:325–332

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrer-Lorente R, Bejar MT, Tous M, Vilahur G, Badimon L (2014) Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia 57:246–256

    Article  PubMed  Google Scholar 

  17. Efimenko A, Starostina E, Kalinina N, Stolzing A (2011) 10-5876-9-10 Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med. 9

    Google Scholar 

  18. Perez LM, Bernal A, SanMartin N, Lorenzo M, Fernandez-Veledo S, Galvez BG (2013) Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes 62:2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cronk SM, Kelly-Goss MR, Ray HC, Mendel TA, Hoehn KL, Bruce AC et al (2015) Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy. Stem Cells Transl Med 4:459–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DiMauro S (2006) Mitochondrial myopathies. Curr Opin Rheumatol 18:636–641

    Article  CAS  PubMed  Google Scholar 

  22. DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123

    Article  CAS  PubMed  Google Scholar 

  23. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR (2012) Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol 810:183–205

    Article  CAS  PubMed  Google Scholar 

  25. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  PubMed  Google Scholar 

  26. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M et al (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012:329635

    Article  PubMed  Google Scholar 

  27. Kroemer G (1997) Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution, Cell Death Differ 4:443–456

    Article  CAS  Google Scholar 

  28. Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31:364–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson KM, Janes MS, Beckman JS (2008) The selective detection of mitochondrial superoxide by live cell imaging. Nat Protoc 3:941–947

    Article  CAS  PubMed  Google Scholar 

  30. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Regmi SG, Rolland SG, Conradt B (2014) Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging (Albany NY) 6:118–130

    Article  Google Scholar 

  33. Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–880

    Article  CAS  PubMed  Google Scholar 

  34. Scorrano L (2007) Multiple functions of mitochondria-shaping proteins. Novartis Found Symp 287:47–55 discussion 55-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project has received funding from the Marie Curie International Research Staff Exchange Scheme with the 7th European Community Framework Program under grant agreement No. 295185 - EULAMDIMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Harmsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hajmousa, G., Harmsen, M.C. (2017). Assessment of Energy Metabolic Changes in Adipose Tissue-Derived Stem Cells. In: Di Nardo, P., Dhingra, S., Singla, D. (eds) Adult Stem Cells. Methods in Molecular Biology, vol 1553. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6756-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6756-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6754-4

  • Online ISBN: 978-1-4939-6756-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics