Skip to main content

Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles

  • Protocol
  • First Online:
Exosomes and Microvesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1545))

Abstract

Accurate characterization of extracellular vesicles (EVs), including exosomes and microvesicles, is essential to obtain further knowledge on the biological relevance of EVs. Tunable resistive pulse sensing (tRPS) has shown promise as a method for single particle-based quantification and size profiling of EVs. Here, we describe the technical background of tRPS and its applications for EV characterization. Besides the standard protocol, we describe an alternative protocol, in which samples are spiked with polystyrene beads of known size and concentration. This alternative protocol can be used to overcome some of the challenges of direct EV characterization in biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22. doi:10.1002/0471143030.cb0322s30

    PubMed  Google Scholar 

  2. Jorgensen M, Baek R, Pedersen S, Sondergaard EK, Kristensen SR, Varming K (2013) Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J Extracell Vesicles 2:PMID: 24009888. doi:10.3402/jev.v2i0.20920

    Article  Google Scholar 

  3. de Vrij J, Maas SL, van Nispen M, Sena-Esteves M, Limpens RW, Koster AJ, Leenstra S, Lamfers ML, Broekman ML (2013) Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine 8(9):1443–1458. doi:10.2217/nnm.12.173

    Article  PubMed  Google Scholar 

  4. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:PMCID: PMC3760643. doi:10.3402/jev.v2i0.19671

    Article  Google Scholar 

  5. Nolte-'t Hoen EN, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ, Bartelink W, Mastrobattista E, van Gaal EV, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8(5):712–720. doi:10.1016/j.nano.2011.09.006

    PubMed  Google Scholar 

  6. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788. doi:10.1016/j.nano.2011.04.003

    CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Vlist EJ, Nolte-'t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7(7):1311–1326. doi:10.1038/nprot.2012.065

    Article  PubMed  Google Scholar 

  8. Maas SLN, De Vrij J, Broekman MLD (2014) Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. J Vis Exp 92:e51623

    Google Scholar 

  9. Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6(23):2653–2658. doi:10.1002/smll.201001129

    Article  CAS  PubMed  Google Scholar 

  10. Kozak D, Anderson W, Vogel R, Chen S, Antaw F, Trau M (2012) Simultaneous size and zeta-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano 6(8):6990–6997. doi:10.1021/nn3020322

    Article  CAS  PubMed  Google Scholar 

  11. Vogel R, Willmott G, Kozak D, Roberts GS, Anderson W, Groenewegen L, Glossop B, Barnett A, Turner A, Trau M (2011) Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem 83(9):3499–3506. doi:10.1021/ac200195n

    Article  CAS  PubMed  Google Scholar 

  12. Willmott GR, Vogel R, Yu SS, Groenewegen LG, Roberts GS, Kozak D, Anderson W, Trau M (2010) Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys Condens Matter 22(45):454116. doi:10.1088/0953-8984/22/45/454116

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Broom MF, Tucker IG (2012) Characterization of a nanoparticulate drug delivery system using scanning ion occlusion sensing. Pharm Res 29(9):2578–2586. doi:10.1007/s11095-012-0788-3

    Article  CAS  PubMed  Google Scholar 

  14. Kozak D, Anderson W, Trau M (2012) Tuning particle velocity and measurement sensitivity by changing pore sensor dimensions. Chem Lett 41(10):1134–1136. doi:10.1246/cl.2012.1134

    Article  CAS  Google Scholar 

  15. Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, Mauri P, Melioli G, Pistoia V (2013) Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One 8(9):e75054. doi:10.1371/journal.pone.0075054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, Giebel B (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150. doi:10.1016/j.colsurfb.2011.05.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank J. Berenguer (VUmc, Amsterdam, The Netherlands) for providing us with the glioblastoma cell culture supernatant.

This work has been financially supported, in part, by the Dutch Hersenstichting (foundation concerned with diseases of the brain), the Schumacher Kramer Stichting (Foundation), and the T&P Bohnenn foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen de Vrij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Maas, S.L.N., Broekman, M.L.D., de Vrij, J. (2017). Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles. In: Hill, A. (eds) Exosomes and Microvesicles. Methods in Molecular Biology, vol 1545. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6728-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6728-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6726-1

  • Online ISBN: 978-1-4939-6728-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics