Advertisement

Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles

  • Sybren L. N. Maas
  • Marike L. D. Broekman
  • Jeroen de VrijEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1545)

Abstract

Accurate characterization of extracellular vesicles (EVs), including exosomes and microvesicles, is essential to obtain further knowledge on the biological relevance of EVs. Tunable resistive pulse sensing (tRPS) has shown promise as a method for single particle-based quantification and size profiling of EVs. Here, we describe the technical background of tRPS and its applications for EV characterization. Besides the standard protocol, we describe an alternative protocol, in which samples are spiked with polystyrene beads of known size and concentration. This alternative protocol can be used to overcome some of the challenges of direct EV characterization in biological fluids.

Key words

Extracellular vesicles Exosomes Microvesicles Characterization Quantification Size distribution qNano Resistive pulse sensing 

Notes

Acknowledgment

We thank J. Berenguer (VUmc, Amsterdam, The Netherlands) for providing us with the glioblastoma cell culture supernatant.

This work has been financially supported, in part, by the Dutch Hersenstichting (foundation concerned with diseases of the brain), the Schumacher Kramer Stichting (Foundation), and the T&P Bohnenn foundation.

References

  1. 1.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22. doi: 10.1002/0471143030.cb0322s30 PubMedGoogle Scholar
  2. 2.
    Jorgensen M, Baek R, Pedersen S, Sondergaard EK, Kristensen SR, Varming K (2013) Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J Extracell Vesicles 2:PMID: 24009888. doi: 10.3402/jev.v2i0.20920 CrossRefGoogle Scholar
  3. 3.
    de Vrij J, Maas SL, van Nispen M, Sena-Esteves M, Limpens RW, Koster AJ, Leenstra S, Lamfers ML, Broekman ML (2013) Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine 8(9):1443–1458. doi: 10.2217/nnm.12.173 CrossRefPubMedGoogle Scholar
  4. 4.
    Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:PMCID: PMC3760643. doi: 10.3402/jev.v2i0.19671 CrossRefGoogle Scholar
  5. 5.
    Nolte-'t Hoen EN, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ, Bartelink W, Mastrobattista E, van Gaal EV, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8(5):712–720. doi: 10.1016/j.nano.2011.09.006 PubMedGoogle Scholar
  6. 6.
    Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788. doi: 10.1016/j.nano.2011.04.003 PubMedPubMedCentralGoogle Scholar
  7. 7.
    van der Vlist EJ, Nolte-'t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7(7):1311–1326. doi: 10.1038/nprot.2012.065 CrossRefPubMedGoogle Scholar
  8. 8.
    Maas SLN, De Vrij J, Broekman MLD (2014) Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. J Vis Exp 92:e51623Google Scholar
  9. 9.
    Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6(23):2653–2658. doi: 10.1002/smll.201001129 CrossRefPubMedGoogle Scholar
  10. 10.
    Kozak D, Anderson W, Vogel R, Chen S, Antaw F, Trau M (2012) Simultaneous size and zeta-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano 6(8):6990–6997. doi: 10.1021/nn3020322 CrossRefPubMedGoogle Scholar
  11. 11.
    Vogel R, Willmott G, Kozak D, Roberts GS, Anderson W, Groenewegen L, Glossop B, Barnett A, Turner A, Trau M (2011) Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem 83(9):3499–3506. doi: 10.1021/ac200195n CrossRefPubMedGoogle Scholar
  12. 12.
    Willmott GR, Vogel R, Yu SS, Groenewegen LG, Roberts GS, Kozak D, Anderson W, Trau M (2010) Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys Condens Matter 22(45):454116. doi: 10.1088/0953-8984/22/45/454116 CrossRefPubMedGoogle Scholar
  13. 13.
    Yang L, Broom MF, Tucker IG (2012) Characterization of a nanoparticulate drug delivery system using scanning ion occlusion sensing. Pharm Res 29(9):2578–2586. doi: 10.1007/s11095-012-0788-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Kozak D, Anderson W, Trau M (2012) Tuning particle velocity and measurement sensitivity by changing pore sensor dimensions. Chem Lett 41(10):1134–1136. doi: 10.1246/cl.2012.1134 CrossRefGoogle Scholar
  15. 15.
    Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, Mauri P, Melioli G, Pistoia V (2013) Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One 8(9):e75054. doi: 10.1371/journal.pone.0075054 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, Giebel B (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150. doi: 10.1016/j.colsurfb.2011.05.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Sybren L. N. Maas
    • 1
    • 2
  • Marike L. D. Broekman
    • 1
    • 2
  • Jeroen de Vrij
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of NeurosurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Department of NeurosurgeryErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations