Reversals of Bodies, Brains, and Behavior

  • Douglas J. Blackiston
  • Michael LevinEmail author
Part of the Neuromethods book series (NM, volume 122)


Left–right asymmetries are highly prevalent throughout metazoan phyla, with bilaterally symmetrical organisms exhibiting well-conserved, consistently sided positioning and anatomy of visceral organs and central nervous system structures. Deviations from normal laterality constitute an important class of birth defects and much study has been devoted to the early mechanisms orienting the left–right axis during embryogenesis as well as lateralization of the brain. Far less understood are the potential links between laterality of the body and cognition, though recent work has begun to uncover a range of behaviors which are modified in organisms with altered left–right asymmetry. Here, we review regulatory events critical for the establishment of asymmetry and subsequent left–right patterning, using data from Xenopus, zebrafish, chick, Arabidopsis, and single cells, and discuss molecular and pharmacological reagents that disrupt these processes. We especially focus on behavioral assays which are sensitive to body laterality, presenting existing data for several model systems. Beyond classical conditioning and behavior screens, new automated machine vision platforms are powerful emerging tools to quantitatively examine the relationship between body asymmetry and lateralized and nonlateralized behaviors. This chapter serves as a primer for methods that allow the examination of cognitive and behavioral endpoints subsequent to molecular interventions in embryonic left–right asymmetry.

Key words

Left–right asymmetry Laterality Behavior Automated analysis Quantification 



We thank the members of the Levin lab and of the behavioral science community for many useful discussions. M.L. gratefully acknowledges an Allen Discovery Center award from The Paul G. Allen Frontiers Group, and support of the Templeton World Charity Foundation (TWCF0089/AB55) and the G. Harold and Leila Y. Mathers Charitable Foundation.


  1. 1.
    McManus C (2002) Right hand, left hand: the origins of asymmetry in brains, bodies, atoms and cultures. Weidenfeld and Nicolson, LondonGoogle Scholar
  2. 2.
    Ludwig W (1932) Rechts-Links-Problem im Tierreich und beim Menschen. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Neville A (1976) Animal asymmetry. Edward Arnold, LondonGoogle Scholar
  4. 4.
    Palmer AR (1996) From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proc Natl Acad Sci U S A 93(25):14279–14286PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Palmer AR (2004) Symmetry breaking and the evolution of development. Science 306(5697):828–833PubMedCrossRefGoogle Scholar
  6. 6.
    Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:1363–1375PubMedCrossRefGoogle Scholar
  7. 7.
    Govind CK (1992) Claw asymmetry in lobsters: case study in developmental neuroethology. J Neurobiol 23(10):1423–1445PubMedCrossRefGoogle Scholar
  8. 8.
    Burn J (1991) Disturbance of morphological laterality in humans. CIBA Found Symp 162:282–296PubMedGoogle Scholar
  9. 9.
    Peeters H, Devriendt K (2006) Human laterality disorders. Eur J Med Genet 49(5):349–362PubMedCrossRefGoogle Scholar
  10. 10.
    Smith AT, Sack GH Jr, Taylor GJ (1979) Holt-Oram syndrome. J Pediatr 95(4):538–543PubMedCrossRefGoogle Scholar
  11. 11.
    Paulozzi LJ, Lary JM (1999) Laterality patterns in infants with external birth defects. Teratology 60(5):265–271PubMedCrossRefGoogle Scholar
  12. 12.
    Sandson TA, Wen PY, LeMay M (1992) Reversed cerebral asymmetry in women with breast cancer. Lancet 339(8792):523–524PubMedCrossRefGoogle Scholar
  13. 13.
    McManus IC (1992) Reversed cerebral asymmetry and breast cancer. Lancet 339(8800):1055PubMedCrossRefGoogle Scholar
  14. 14.
    Sotelo-Avila C, Gonzalez-Crussi F, Fowler JW (1980) Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J Pediatr 96(1):47–50PubMedCrossRefGoogle Scholar
  15. 15.
    Veltmaat JM, Ramsdell AF, Sterneck E (2013) Positional variations in mammary gland development and cancer. J Mammary Gland Biol Neoplasia 18(2):179–188PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Neveu PJ (1993) Brain lateralization and immunomodulation. Int J Neurosci 70(1–2):135–143PubMedCrossRefGoogle Scholar
  17. 17.
    Neveu PJ (2002) Cerebral lateralization and the immune system. Int Rev Neurobiol 52:303–323PubMedCrossRefGoogle Scholar
  18. 18.
    Klar AJ (1999) Genetic models for handedness, brain lateralization, schizophrenia, and manic-depression. Schizophr Res 39(3):207–218PubMedCrossRefGoogle Scholar
  19. 19.
    Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28(4):575–589, discussion 589–633PubMedGoogle Scholar
  20. 20.
    McManus C (2005) Reversed bodies, reversed brains, and (some) reversed behaviors: of zebrafish and men. Dev Cell 8(6):796–797PubMedCrossRefGoogle Scholar
  21. 21.
    Halpern ME et al (2005) Lateralization of the vertebrate brain: taking the side of model systems. J Neurosci 25(45):10351–10357PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Frasnelli E, Vallortigara G, Rogers LJ (2012) Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav Rev 36(4):1273–1291PubMedCrossRefGoogle Scholar
  23. 23.
    Levin M et al (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82(5):803–814PubMedCrossRefGoogle Scholar
  24. 24.
    Brown NA, Wolpert L (1990) The development of handedness in left/right asymmetry. Development 109(1):1–9PubMedGoogle Scholar
  25. 25.
    Sauer S, Klar AJ (2012) Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene. Front Oncol 2:166PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Basu B, Brueckner M (2008) Cilia: multifunctional organelles at the center of vertebrate left-right asymmetry. Curr Top Dev Biol 85:151–174PubMedCrossRefGoogle Scholar
  27. 27.
    Tee YH et al (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17(4):445–457PubMedCrossRefGoogle Scholar
  28. 28.
    Taniguchi K et al (2011) Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333(6040):339–341PubMedCrossRefGoogle Scholar
  29. 29.
    Lobikin M et al (2012) Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc Natl Acad Sci U S A 109(31):12586–12591PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Toyoizumi R et al (1997) Adrenergic neurotransmitters and calcium ionophore-induced situs inversus viscerum in Xenopus laevis embryos. Dev Growth Differ 39(4):505–514PubMedCrossRefGoogle Scholar
  31. 31.
    Garic-Stankovic A et al (2008) A ryanodine receptor-dependent Cai2+ asymmetry at Hensen’s node mediates avian lateral identity. Development 135(19):3271–3280PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fukumoto T, Blakely R, Levin M (2005) Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Dev Neurosci 27(6):349–363PubMedCrossRefGoogle Scholar
  33. 33.
    Levin M et al (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111(1):77–89PubMedCrossRefGoogle Scholar
  34. 34.
    Raya A et al (2004) Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 427(6970):121–128PubMedCrossRefGoogle Scholar
  35. 35.
    Levin M (1998) Left-right asymmetry and the chick embryo. Semin Cell Dev Biol 9(1):67–76PubMedCrossRefGoogle Scholar
  36. 36.
    Muller P et al (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336(6082):721–724PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kato Y (2011) The multiple roles of Notch signaling during left-right patterning. Cell Mol Life Sci 68(15):2555–2567PubMedCrossRefGoogle Scholar
  38. 38.
    Ramasubramanian A et al (2013) On the role of intrinsic and extrinsic forces in early cardiac S-looping. Dev Dyn 242(7):801–816PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Horne-Badovinac S, Rebagliati M, Stainier DY (2003) A cellular framework for gut-looping morphogenesis in zebrafish. Science 302(5645):662–665PubMedCrossRefGoogle Scholar
  40. 40.
    Raya A, Belmonte JC (2006) Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev Genet 7(4):283–293PubMedCrossRefGoogle Scholar
  41. 41.
    Levin M (2006) Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. Birth Defects Res C Embryo Today 78(3):191–223PubMedCrossRefGoogle Scholar
  42. 42.
    Branford WW, Essner JJ, Yost HJ (2000) Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling. Dev Biol 223(2):291–306PubMedCrossRefGoogle Scholar
  43. 43.
    Tabin C (2005) Do we know anything about how left-right asymmetry is first established in the vertebrate embryo? J Mol Histol 36(5):317–323PubMedCrossRefGoogle Scholar
  44. 44.
    Vandenberg LN, Levin M (2010) Far from solved: a perspective on what we know about early mechanisms of left-right asymmetry. Dev Dyn 239(12):3131–3146PubMedCrossRefGoogle Scholar
  45. 45.
    Vandenberg LN, Levin M (2009) Perspectives and open problems in the early phases of left-right patterning. Semin Cell Dev Biol 20(4):456–463PubMedCrossRefGoogle Scholar
  46. 46.
    Aw S, Levin M (2008) What's left in asymmetry? Dev Dyn 237(12):3453–3463PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ahmad N, Long S, Rebagliati M (2004) A southpaw joins the roster: the role of the zebrafish nodal-related gene southpaw in cardiac LR asymmetry. Trends Cardiovasc Med 14(2):43–49PubMedCrossRefGoogle Scholar
  48. 48.
    Halpern ME, Liang JO, Gamse JT (2003) Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci 26(6):308–313PubMedCrossRefGoogle Scholar
  49. 49.
    Baier H (2000) Zebrafish on the move: towards a behavior-genetic analysis of vertebrate vision. Curr Opin Neurobiol 10(4):451–455PubMedCrossRefGoogle Scholar
  50. 50.
    Buske C, Gerlai R (2011) Shoaling develops with age in Zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 35(6):1409–1415PubMedCrossRefGoogle Scholar
  51. 51.
    Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A 98(20):11691–11696PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Engeszer RE, Ryan MJ, Parichy DM (2004) Learned social preference in zebrafish. Curr Biol 14(10):881–884PubMedCrossRefGoogle Scholar
  53. 53.
    Fetcho JR, Liu KS (1998) Zebrafish as a model system for studying neuronal circuits and behavior. Ann N Y Acad Sci 860:333–345PubMedCrossRefGoogle Scholar
  54. 54.
    Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15(4):2609–2622PubMedCrossRefGoogle Scholar
  55. 55.
    Gerlai R, Lee V, Blaser R (2006) Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav 85(4):752–761PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Goldsmith P (2001) Modelling eye diseases in zebrafish. Neuroreport 12(13):A73–A77PubMedCrossRefGoogle Scholar
  57. 57.
    Pan Y et al (2011) Chronic alcohol exposure induced gene expression changes in the zebrafish brain. Behav Brain Res 216(1):66–76PubMedCrossRefGoogle Scholar
  58. 58.
    Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3(2):63–74PubMedCrossRefGoogle Scholar
  59. 59.
    Hruscha A et al (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140(24):4982–4987PubMedCrossRefGoogle Scholar
  60. 60.
    Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22(1):61–71PubMedCrossRefGoogle Scholar
  62. 62.
    Knopfel T et al (2010) Toward the second generation of optogenetic tools. J Neurosci 30(45):14998–15004PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Portugues R et al (2013) Optogenetics in a transparent animal: circuit function in the larval zebrafish. Curr Opin Neurobiol 23(1):119–126PubMedCrossRefGoogle Scholar
  64. 64.
    Simmich J, Staykov E, Scott E (2012) Zebrafish as an appealing model for optogenetic studies. Prog Brain Res 196:145–162PubMedCrossRefGoogle Scholar
  65. 65.
    Del Bene F, Wyart C (2012) Optogenetics: a new enlightenment age for zebrafish neurobiology. Dev Neurobiol 72(3):404–414PubMedCrossRefGoogle Scholar
  66. 66.
    Wyart C, Del Bene F (2011) Let there be light: zebrafish neurobiology and the optogenetic revolution. Rev Neurosci 22(1):121–130PubMedCrossRefGoogle Scholar
  67. 67.
    Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20(8):R371–R381PubMedCrossRefGoogle Scholar
  68. 68.
    Kupffer C (1868) Beobachtungea uber die Entwicklung der Knochenfische. Arch Mikrob Anat 4:209–272CrossRefGoogle Scholar
  69. 69.
    Bisgrove BW et al (2005) Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer’s vesicle are required for specification of the zebrafish left-right axis. Dev Biol 287(2):274–288PubMedCrossRefGoogle Scholar
  70. 70.
    Essner J et al (2002) Conserved function for embryonic nodal cilia. Nature 418:37–38PubMedCrossRefGoogle Scholar
  71. 71.
    Essner JJ et al (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132(6):1247–1260PubMedCrossRefGoogle Scholar
  72. 72.
    Amack JD, Yost HJ (2004) The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr Biol 14(8):685–690PubMedCrossRefGoogle Scholar
  73. 73.
    Kramer-Zucker AG et al (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132(8):1907–1921PubMedCrossRefGoogle Scholar
  74. 74.
    Amack JD, Wang X, Yost HJ (2007) Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer’s vesicle in zebrafish. Dev Biol 310(2):196–210PubMedCrossRefGoogle Scholar
  75. 75.
    Becker-Heck A et al (2011) The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43(1):79-U105CrossRefGoogle Scholar
  76. 76.
    Francescatto L et al (2010) The activation of membrane targeted CaMK-II in the zebrafish Kupffer’s vesicle is required for left-right asymmetry. Development 137(16):2753–2762PubMedCrossRefGoogle Scholar
  77. 77.
    Wang GL et al (2011) The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development 138(1):45–54PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hamada H et al (2002) Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3(2):103–113PubMedCrossRefGoogle Scholar
  79. 79.
    Ramsdell AF, Yost HJ (1998) Molecular mechanisms of vertebrate left-right development. Trends Genet 14(11):459–465PubMedCrossRefGoogle Scholar
  80. 80.
    Lenhart KF et al (2013) Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry. PLoS Genet 9(1):e1003109PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lin SY, Burdine RD (2005) Brain asymmetry: switching from left to right. Curr Biol 15(9):R343–R345PubMedCrossRefGoogle Scholar
  82. 82.
    Concha ML et al (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28(2):399–409PubMedCrossRefGoogle Scholar
  83. 83.
    Bamford RN et al (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 26(3):365–369PubMedCrossRefGoogle Scholar
  84. 84.
    Yan YT et al (1999) Conserved requirement for EGF-CFC genes in vertebrate left-right axis formation. Genes Dev 13(19):2527–2537PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bisgrove BW, Essner JJ, Yost HJ (2000) Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127(16):3567–3579PubMedGoogle Scholar
  86. 86.
    Gamse JT et al (2003) The parapineal mediates left-right asymmetry in the zebrafish diencephalon. Development 130(6):1059–1068PubMedCrossRefGoogle Scholar
  87. 87.
    Aizawa H et al (2005) Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Curr Biol 15(3):238–243PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gamse JT et al (2005) Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development 132(21):4869–4881PubMedCrossRefGoogle Scholar
  89. 89.
    Amat J et al (2001) The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res 917(1):118–126PubMedCrossRefGoogle Scholar
  90. 90.
    Haun F, Eckenrode TC, Murray M (1992) Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus. J Neurosci 12(8):3282–3290PubMedGoogle Scholar
  91. 91.
    Lecourtier L, Kelly PH (2005) Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology 30(3):484–496PubMedCrossRefGoogle Scholar
  92. 92.
    Lecourtier L, Neijt HC, Kelly PH (2004) Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. Eur J Neurosci 19(9):2551–2560PubMedCrossRefGoogle Scholar
  93. 93.
    Murphy CA et al (1996) Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions. Behav Brain Res 81(1–2):43–52PubMedCrossRefGoogle Scholar
  94. 94.
    Valjakka A et al (1998) The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res Bull 47(2):171–184PubMedCrossRefGoogle Scholar
  95. 95.
    Barth KA et al (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol 15(9):844–850PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Miklosi A, Andrew RJ (2006) The zebrafish as a model for behavioral studies. Zebrafish 3(2):227–234PubMedCrossRefGoogle Scholar
  97. 97.
    Sovrano VA et al (1999) Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106(1–2):175–180CrossRefGoogle Scholar
  98. 98.
    Bisazza A, Pignatti R, Vallortigara G (1997) Laterality in detour behaviour: interspecific variation in poeciliid fish. Anim Behav 54(5):1273–1281PubMedCrossRefGoogle Scholar
  99. 99.
    Facchin L, Bisazza A, Vallortigara G (1999) What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use. Behav Brain Res 103(2):229–234PubMedCrossRefGoogle Scholar
  100. 100.
    Miklosi A, Andrew RJ (1999) Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105(2):199–205PubMedCrossRefGoogle Scholar
  101. 101.
    Miklosi A, Andrew RJ, Gasparini S (2001) Role of right hemifield in visual control of approach to target in zebrafish. Behav Brain Res 122(1):57–65PubMedCrossRefGoogle Scholar
  102. 102.
    Vallortigara G et al (2001) How birds use their eyes: opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Curr Biol 11(1):29–33PubMedCrossRefGoogle Scholar
  103. 103.
    Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  104. 104.
    Gunturkun O, Kesch S (1987) Visual lateralization during feeding in pigeons. Behav Neurosci 101(3):433–435PubMedCrossRefGoogle Scholar
  105. 105.
    Robins A et al (1998) Lateralized agonistic responses and hindlimb use in toads. Anim Behav 56:875–881PubMedCrossRefGoogle Scholar
  106. 106.
    Yaman S et al (2003) Visual lateralization in the bottlenose dolphin (Tursiops truncatus): evidence for a population asymmetry? Behav Brain Res 142(1–2):109–114PubMedCrossRefGoogle Scholar
  107. 107.
    Miklosi A, Andrew RJ, Savage H (1997) Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol Behav 63(1):127–135PubMedCrossRefGoogle Scholar
  108. 108.
    Sovrano VA (2004) Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behav Brain Res 152(2):385–391PubMedCrossRefGoogle Scholar
  109. 109.
    Dadda M et al (2010) Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res 206(2):208–215PubMedCrossRefGoogle Scholar
  110. 110.
    Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. Ilar J 48(3):260–269PubMedCrossRefGoogle Scholar
  111. 111.
    Beck CW, Slack JM (2001) An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol 2(10):REVIEWS1029PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mouche I, Malesic L, Gillardeaux O (2011) FETAX assay for evaluation of developmental toxicity. Methods Mol Biol 691:257–269PubMedCrossRefGoogle Scholar
  113. 113.
    Pratt KG, Khakhalin AS (2013) Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 6(5):1057–1065PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248PubMedCrossRefGoogle Scholar
  115. 115.
    Tseng AS, Levin M (2008) Tail regeneration in Xenopus laevis as a model for understanding tissue repair. J Dent Res 87(9):806–816PubMedCrossRefGoogle Scholar
  116. 116.
    Gibbs KM, Chittur SV, Szaro BG (2011) Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. Eur J Neurosci 33(1):9–25PubMedCrossRefGoogle Scholar
  117. 117.
    Lee-Liu D et al (2014) Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev 9:12PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Koide T, Hayata T, Cho KW (2005) Xenopus as a model system to study transcriptional regulatory networks. Proc Natl Acad Sci U S A 102(14):4943–4948PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ruben LN, Clothier RH, Balls M (2007) Cancer resistance in amphibians. Altern Lab Anim 35(5):463–470PubMedGoogle Scholar
  120. 120.
    Lobikin M et al (2012) Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Phys Biol 9(6):065002PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Robert J, Cohen N (2011) The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century. Dev Comp Immunol 35(9):916–923PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238(6):1249–1270PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kinney KS, Cohen N (2009) Neural-immune system interactions in Xenopus. Front Biosci 14:112–129CrossRefGoogle Scholar
  124. 124.
    Callery EM (2006) There’s more than one frog in the pond: a survey of the Amphibia and their contributions to developmental biology. Semin Cell Dev Biol 17(1):80–92PubMedCrossRefGoogle Scholar
  125. 125.
    Vandenberg LN, Lemire JM, Levin M (2013) It's never too early to get it right: a conserved role for the cytoskeleton in left-right asymmetry. Commun Integr Biol 6(6):e27155PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Schweickert A et al (2012) Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: a theoretical approach. Differentiation 83(2):S67–S77PubMedCrossRefGoogle Scholar
  127. 127.
    Blum M et al (2009) Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev Dyn 238(6):1215–1225PubMedCrossRefGoogle Scholar
  128. 128.
    Yost HJ (1991) Development of the left-right axis in amphibians. Ciba Found Symp 162:165–176, discussion 176–181PubMedGoogle Scholar
  129. 129.
    Yost HJ (1990) Inhibition of proteoglycan synthesis eliminates left-right asymmetry in Xenopus laevis cardiac looping. Development 110(3):865–874PubMedGoogle Scholar
  130. 130.
    Adams DS, Levin M (2006) Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis 44(11):530–540PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Dush MK et al (2011) Heterotaxin: a TGF-beta signaling inhibitor identified in a multi-phenotype profiling screen in Xenopus embryos. Chem Biol 18(2):252–263PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wheeler GN, Liu KJ (2012) Xenopus: an ideal system for chemical genetics. Genesis 50(3):207–218PubMedCrossRefGoogle Scholar
  133. 133.
    Wheeler GN, Brandli AW (2009) Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn 238(6):1287–1308PubMedCrossRefGoogle Scholar
  134. 134.
    Sampath K et al (1997) Functional differences among Xenopus nodal-related genes in left-right axis determination. Development 124(17):3293–3302PubMedGoogle Scholar
  135. 135.
    Cheng AM et al (2000) The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. Development 127(5):1049–1061PubMedGoogle Scholar
  136. 136.
    Vandenberg LN, Levin M (2010) Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin. Development 137(7):1095–1105PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Levin M, Mercola M (1998) Gap junctions are involved in the early generation of left-right asymmetry. Dev Biol 203(1):90–105PubMedCrossRefGoogle Scholar
  138. 138.
    Vandenberg LN, Lemire JM, Levin M (2013) Serotonin has early, cilia-independent roles in Xenopus left-right patterning. Dis Model Mech 6(1):261–268PubMedCrossRefGoogle Scholar
  139. 139.
    Schweickert A et al (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17(1):60–66PubMedCrossRefGoogle Scholar
  140. 140.
    Adams DS et al (2006) Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133(9):1657–1671PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Aw S et al (2008) H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 125(3–4):353–372PubMedCrossRefGoogle Scholar
  142. 142.
    Morokuma J, Blackiston D, Levin M (2008) KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 21(5–6):357–372PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Aw S et al (2010) The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos. Dev Biol 346:39–53PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Carneiro K et al (2011) Histone deacetylase activity is necessary for left-right patterning during vertebrate development. BMC Dev Biol 11(1):29PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Vandenberg LN et al (2013) Rab GTPases are required for early orientation of the left-right axis in Xenopus. Mech Dev 130:254–271PubMedCrossRefGoogle Scholar
  146. 146.
    Aw S, Levin M (2009) Is left-right asymmetry a form of planar cell polarity? Development 136(3):355–366PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Levin M, Palmer AR (2007) Left-right patterning from the inside out: widespread evidence for intracellular control. Bioessays 29(3):271–287PubMedCrossRefGoogle Scholar
  148. 148.
    Bunney TD, De Boer AH, Levin M (2003) Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development 130(20):4847–4858PubMedCrossRefGoogle Scholar
  149. 149.
    Fukumoto T, Kema IP, Levin M (2005) Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr Biol 15(9):794–803PubMedCrossRefGoogle Scholar
  150. 150.
    Qiu D et al (2005) Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry. Dev Dyn 234(1):176–189PubMedCrossRefGoogle Scholar
  151. 151.
    Vandenberg LN, Pennarola BW, Levin M (2011) Low frequency vibrations disrupt left-right patterning in the Xenopus embryo. PLoS One 6(8):e23306PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Vandenberg LN, Stevenson C, Levin M (2012) Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner. PLoS One 7(12):e51473PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Robins A, Rogers LJ (2006) Lateralized visual and motor responses in the green tree frog, Litoria caerulea. Anim Behav 72:843–852CrossRefGoogle Scholar
  154. 154.
    Bisazza A et al (1996) Right-pawedness in toads. Nature 379(6564):408CrossRefGoogle Scholar
  155. 155.
    Bisazza A et al (1997) Pawedness and motor asymmetries in toads. Laterality 2(1):49–64PubMedCrossRefGoogle Scholar
  156. 156.
    Blackiston DJ, Levin M (2013) Inversion of left-right asymmetry alters performance of Xenopus tadpoles in nonlateralized cognitive tasks. Anim Behav 86(2):459–466PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Mcgill TE (1960) Response of the leopard frog to electric shock in an escape-learning situation. J Comp Physiol Psychol 53(4):443–445CrossRefGoogle Scholar
  158. 158.
    Thompson PA, Boice R (1975) Attempts to train frogs—review and experiments. J Biol Psychol 17(1):3–13Google Scholar
  159. 159.
    Blackiston D et al (2010) A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 5(12):e14370PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Blackiston DJ, Levin M (2012) Aversive training methods in Xenopus laevis: general principles. Cold Spring Harb Protoc 2012(5)Google Scholar
  161. 161.
    Blackiston DJ, Levin M (2013) Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. J Exp Biol 216(Pt 6):1031–1040PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    James EJ et al (2015) Valproate-induced neurodevelopmental deficits in Xenopus laevis tadpoles. J Neurosci 35(7):3218–3229PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Khakhalin AS et al (2014) Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles. Eur J Neurosci 40(6):2948–2962PubMedCrossRefGoogle Scholar
  164. 164.
    Spawn A, Aizenman CD (2012) Abnormal visual processing and increased seizure susceptibility result from developmental exposure to the biocide methylisothiazolinone. Neuroscience 205:194–204PubMedCrossRefGoogle Scholar
  165. 165.
    Bell MR et al (2011) A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy. Nat Neurosci 14(4):505–512PubMedCrossRefGoogle Scholar
  166. 166.
    Dong W et al (2009) Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J Neurophysiol 101(2):803–815PubMedCrossRefGoogle Scholar
  167. 167.
    Pai VP et al (2012) Neurally derived tissues in Xenopus laevis embryos exhibit a consistent bioelectrical left-right asymmetry. Stem Cells Int 2012:353491PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Gros J et al (2009) Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science 324(5929):941–944PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Levin M et al (1996) Laterality defects in conjoined twins. Nature 384(6607):321PubMedCrossRefGoogle Scholar
  170. 170.
    Raya A, Belmonte JCI (2004) Unveiling the establishment of left-right asymmetry in the chick embryo. Mech Dev 121(9):1043–1054PubMedCrossRefGoogle Scholar
  171. 171.
    Monsoro-Burq A, Le Douarin NM (2001) BMP4 plays a key role in left-right patterning in chick embryos by maintaining Sonic Hedgehog asymmetry. Mol Cell 7(4):789–799PubMedCrossRefGoogle Scholar
  172. 172.
    Manner J (2001) Does an equivalent of the “ventral node” exist in chick embryos? A scanning electron microscopic study. Anat Embryol 203(6):481–490PubMedCrossRefGoogle Scholar
  173. 173.
    Zhang Y, Levin M (2009) Left-right asymmetry in the chick embryo requires core planar cell polarity protein Vangl2. Genesis 47(11):719–728PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Raya A et al (2003) Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev 17(10):1213–1218PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Hibino T et al (2006) Ion flow regulates left-right asymmetry in sea urchin development. Dev Genes Evol 216(5):265–276PubMedCrossRefGoogle Scholar
  176. 176.
    Shimeld SM, Levin M (2006) Evidence for the regulation of left-right asymmetry in Ciona intestinalis by ion flux. Dev Dyn 235(6):1543–1553PubMedCrossRefGoogle Scholar
  177. 177.
    Dharmaretnam M, Andrew RJ (1994) Age-specific and stimulus-specific use of right and left eyes by the domestic chick. Anim Behav 48(6):1395–1406CrossRefGoogle Scholar
  178. 178.
    Vallortigara G, Regolin L, Pagni P (1999) Detour behaviour, imprinting and visual lateralization in the domestic chick. Cogn Brain Res 7(3):307–320CrossRefGoogle Scholar
  179. 179.
    Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73(2):236–253PubMedCrossRefGoogle Scholar
  180. 180.
    Rogers LJ (2008) Development and function of lateralization in the avian brain. Brain Res Bull 76(3):235–244PubMedCrossRefGoogle Scholar
  181. 181.
    Okumura T et al (2008) The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails. Dev Dyn 237(12):3497–3515PubMedCrossRefGoogle Scholar
  182. 182.
    Speder P et al (2007) Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev 17(4):351–358PubMedCrossRefGoogle Scholar
  183. 183.
    Xu J et al (2007) Polarity reveals intrinsic cell chirality. Proc Natl Acad Sci U S A 104(22):9296–9300PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Chen TH et al (2012) Left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics. Circ Res 110(4):551–559PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Tamada A et al (2010) Autonomous right-screw rotation of growth cone filopodia drives neurite turning. J Cell Biol 188(3):429–441PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Heacock AM, Agranoff BW (1977) Clockwise growth of neurites from retinal explants. Science 198(4312):64–66PubMedCrossRefGoogle Scholar
  187. 187.
    Wan LQ, Vunjak-Novakovic G (2011) Micropatterning chiral morphogenesis. Commun Integr Biol 4(6):745–748PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Wan LQ et al (2011) Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc Natl Acad Sci U S A 108(30):12295–12300PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Aufderheide KJ, Frankel J, Williams NE (1980) Formation and positioning of surface-related structures in protozoa. Microbiol Rev 44(2):252–302PubMedPubMedCentralGoogle Scholar
  190. 190.
    Geimer S, Melkonian M (2004) The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 117(Pt 13):2663–2674PubMedCrossRefGoogle Scholar
  191. 191.
    Munoz-Nortes T et al (2014) Symmetry, asymmetry, and the cell cycle in plants: known knowns and some known unknowns. J Exp Bot 65(10):2645–2655PubMedCrossRefGoogle Scholar
  192. 192.
    Abe T, Thitamadee S, Hashimoto T (2004) Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiol 45(2):211–220PubMedCrossRefGoogle Scholar
  193. 193.
    Costa MM et al (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132(22):5093–5101PubMedCrossRefGoogle Scholar
  194. 194.
    Hashimoto T (2002) Molecular genetic analysis of left-right handedness in plants. Philos Trans R Soc Lond B Biol Sci 357(1422):799–808PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Henley CL (2012) Possible origins of macroscopic left-right asymmetry in organisms. J Stat Phys 148(4):740–774CrossRefGoogle Scholar
  196. 196.
    Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417(6885):193–196PubMedCrossRefGoogle Scholar
  197. 197.
    Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122(Pt 13):2208–2217PubMedCrossRefGoogle Scholar
  198. 198.
    Blaser R, Gerlai R (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods 38(3):456–469PubMedCrossRefGoogle Scholar
  199. 199.
    Delcourt J et al (2006) Comparing the EthoVision 2.3 system and a new computerized multitracking prototype system to measure the swimming behavior in fry fish. Behav Res Methods 38(4):704–710PubMedCrossRefGoogle Scholar
  200. 200.
    Bass SL, Gerlai R (2008) Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186(1):107–117PubMedCrossRefGoogle Scholar
  201. 201.
    Gerlai R, Fernandes Y, Pereira T (2009) Zebrafish (Danio rerio) responds to the animated image of a predator: towards the development of an automated aversive task. Behav Brain Res 201(2):318–324PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Speedie N, Gerlai R (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188(1):168–177PubMedCrossRefGoogle Scholar
  203. 203.
    Lopez Patino MA et al (2008) Gender differences in zebrafish responses to cocaine withdrawal. Physiol Behav 95(1–2):36–47PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Prober DA et al (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26(51):13400–13410PubMedCrossRefGoogle Scholar
  205. 205.
    Zhdanova IV et al (2008) Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Res Bull 75(2–4):433–441PubMedCrossRefGoogle Scholar
  206. 206.
    Sison M, Gerlai R (2010) Associative learning in zebrafish (Danio rerio) in the plus maze. Behav Brain Res 207(1):99–104PubMedCrossRefGoogle Scholar
  207. 207.
    Al-Imari L, Gerlai R (2008) Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res 189(1):216–219PubMedCrossRefGoogle Scholar
  208. 208.
    Gerlai R et al (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67(4):773–782PubMedCrossRefGoogle Scholar
  209. 209.
    Berman GJ et al (2014) Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface 11(99)Google Scholar
  210. 210.
    Kabra M et al (2013) JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods 10(1):64–67PubMedCrossRefGoogle Scholar
  211. 211.
    Maaswinkel H et al (2013) Dissociating the effects of habituation, black walls, buspirone and ethanol on anxiety-like behavioral responses in shoaling zebrafish. A 3D approach to social behavior. Pharmacol Biochem Behav 108:16–27PubMedCrossRefGoogle Scholar
  212. 212.
    Maaswinkel H, Zhu L, Weng W (2012) The immediate and the delayed effects of buspirone on zebrafish (Danio rerio) in an open field test: a 3-D approach. Behav Brain Res 234(2):365–374PubMedCrossRefGoogle Scholar
  213. 213.
    Maaswinkel H, Zhu LQ, Weng W (2013) Using an automated 3D-tracking system to record individual and shoals of adult zebrafish. J Vis Exp (82): 50681Google Scholar
  214. 214.
    Zhu L, Weng W (2007) Catadioptric stereo-vision system for the real-time monitoring of 3D behavior in aquatic animals. Physiol Behav 91(1):106–119PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1. Biology Department, and Allen Discovery Center at TuftsTufts UniversityMedfordUSA

Personalised recommendations