Skip to main content

Reversals of Bodies, Brains, and Behavior

  • Protocol
  • First Online:
Lateralized Brain Functions

Part of the book series: Neuromethods ((NM,volume 122))

Abstract

Left–right asymmetries are highly prevalent throughout metazoan phyla, with bilaterally symmetrical organisms exhibiting well-conserved, consistently sided positioning and anatomy of visceral organs and central nervous system structures. Deviations from normal laterality constitute an important class of birth defects and much study has been devoted to the early mechanisms orienting the left–right axis during embryogenesis as well as lateralization of the brain. Far less understood are the potential links between laterality of the body and cognition, though recent work has begun to uncover a range of behaviors which are modified in organisms with altered left–right asymmetry. Here, we review regulatory events critical for the establishment of asymmetry and subsequent left–right patterning, using data from Xenopus, zebrafish, chick, Arabidopsis, and single cells, and discuss molecular and pharmacological reagents that disrupt these processes. We especially focus on behavioral assays which are sensitive to body laterality, presenting existing data for several model systems. Beyond classical conditioning and behavior screens, new automated machine vision platforms are powerful emerging tools to quantitatively examine the relationship between body asymmetry and lateralized and nonlateralized behaviors. This chapter serves as a primer for methods that allow the examination of cognitive and behavioral endpoints subsequent to molecular interventions in embryonic left–right asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McManus C (2002) Right hand, left hand: the origins of asymmetry in brains, bodies, atoms and cultures. Weidenfeld and Nicolson, London

    Google Scholar 

  2. Ludwig W (1932) Rechts-Links-Problem im Tierreich und beim Menschen. Springer, Berlin

    Book  Google Scholar 

  3. Neville A (1976) Animal asymmetry. Edward Arnold, London

    Google Scholar 

  4. Palmer AR (1996) From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proc Natl Acad Sci U S A 93(25):14279–14286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmer AR (2004) Symmetry breaking and the evolution of development. Science 306(5697):828–833

    Article  CAS  PubMed  Google Scholar 

  6. Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:1363–1375

    Article  PubMed  Google Scholar 

  7. Govind CK (1992) Claw asymmetry in lobsters: case study in developmental neuroethology. J Neurobiol 23(10):1423–1445

    Article  CAS  PubMed  Google Scholar 

  8. Burn J (1991) Disturbance of morphological laterality in humans. CIBA Found Symp 162:282–296

    CAS  PubMed  Google Scholar 

  9. Peeters H, Devriendt K (2006) Human laterality disorders. Eur J Med Genet 49(5):349–362

    Article  PubMed  Google Scholar 

  10. Smith AT, Sack GH Jr, Taylor GJ (1979) Holt-Oram syndrome. J Pediatr 95(4):538–543

    Article  CAS  PubMed  Google Scholar 

  11. Paulozzi LJ, Lary JM (1999) Laterality patterns in infants with external birth defects. Teratology 60(5):265–271

    Article  CAS  PubMed  Google Scholar 

  12. Sandson TA, Wen PY, LeMay M (1992) Reversed cerebral asymmetry in women with breast cancer. Lancet 339(8792):523–524

    Article  CAS  PubMed  Google Scholar 

  13. McManus IC (1992) Reversed cerebral asymmetry and breast cancer. Lancet 339(8800):1055

    Article  CAS  PubMed  Google Scholar 

  14. Sotelo-Avila C, Gonzalez-Crussi F, Fowler JW (1980) Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J Pediatr 96(1):47–50

    Article  CAS  PubMed  Google Scholar 

  15. Veltmaat JM, Ramsdell AF, Sterneck E (2013) Positional variations in mammary gland development and cancer. J Mammary Gland Biol Neoplasia 18(2):179–188

    Article  PubMed  PubMed Central  Google Scholar 

  16. Neveu PJ (1993) Brain lateralization and immunomodulation. Int J Neurosci 70(1–2):135–143

    Article  CAS  PubMed  Google Scholar 

  17. Neveu PJ (2002) Cerebral lateralization and the immune system. Int Rev Neurobiol 52:303–323

    Article  CAS  PubMed  Google Scholar 

  18. Klar AJ (1999) Genetic models for handedness, brain lateralization, schizophrenia, and manic-depression. Schizophr Res 39(3):207–218

    Article  CAS  PubMed  Google Scholar 

  19. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28(4):575–589, discussion 589–633

    PubMed  Google Scholar 

  20. McManus C (2005) Reversed bodies, reversed brains, and (some) reversed behaviors: of zebrafish and men. Dev Cell 8(6):796–797

    Article  CAS  PubMed  Google Scholar 

  21. Halpern ME et al (2005) Lateralization of the vertebrate brain: taking the side of model systems. J Neurosci 25(45):10351–10357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frasnelli E, Vallortigara G, Rogers LJ (2012) Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav Rev 36(4):1273–1291

    Article  PubMed  Google Scholar 

  23. Levin M et al (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82(5):803–814

    Article  CAS  PubMed  Google Scholar 

  24. Brown NA, Wolpert L (1990) The development of handedness in left/right asymmetry. Development 109(1):1–9

    CAS  PubMed  Google Scholar 

  25. Sauer S, Klar AJ (2012) Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene. Front Oncol 2:166

    Article  PubMed  PubMed Central  Google Scholar 

  26. Basu B, Brueckner M (2008) Cilia: multifunctional organelles at the center of vertebrate left-right asymmetry. Curr Top Dev Biol 85:151–174

    Article  CAS  PubMed  Google Scholar 

  27. Tee YH et al (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17(4):445–457

    Article  CAS  PubMed  Google Scholar 

  28. Taniguchi K et al (2011) Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333(6040):339–341

    Article  CAS  PubMed  Google Scholar 

  29. Lobikin M et al (2012) Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc Natl Acad Sci U S A 109(31):12586–12591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toyoizumi R et al (1997) Adrenergic neurotransmitters and calcium ionophore-induced situs inversus viscerum in Xenopus laevis embryos. Dev Growth Differ 39(4):505–514

    Article  CAS  PubMed  Google Scholar 

  31. Garic-Stankovic A et al (2008) A ryanodine receptor-dependent Cai2+ asymmetry at Hensen’s node mediates avian lateral identity. Development 135(19):3271–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukumoto T, Blakely R, Levin M (2005) Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Dev Neurosci 27(6):349–363

    Article  CAS  PubMed  Google Scholar 

  33. Levin M et al (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111(1):77–89

    Article  CAS  PubMed  Google Scholar 

  34. Raya A et al (2004) Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 427(6970):121–128

    Article  CAS  PubMed  Google Scholar 

  35. Levin M (1998) Left-right asymmetry and the chick embryo. Semin Cell Dev Biol 9(1):67–76

    Article  CAS  PubMed  Google Scholar 

  36. Muller P et al (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336(6082):721–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kato Y (2011) The multiple roles of Notch signaling during left-right patterning. Cell Mol Life Sci 68(15):2555–2567

    Article  CAS  PubMed  Google Scholar 

  38. Ramasubramanian A et al (2013) On the role of intrinsic and extrinsic forces in early cardiac S-looping. Dev Dyn 242(7):801–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horne-Badovinac S, Rebagliati M, Stainier DY (2003) A cellular framework for gut-looping morphogenesis in zebrafish. Science 302(5645):662–665

    Article  CAS  PubMed  Google Scholar 

  40. Raya A, Belmonte JC (2006) Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev Genet 7(4):283–293

    Article  CAS  PubMed  Google Scholar 

  41. Levin M (2006) Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. Birth Defects Res C Embryo Today 78(3):191–223

    Article  CAS  PubMed  Google Scholar 

  42. Branford WW, Essner JJ, Yost HJ (2000) Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling. Dev Biol 223(2):291–306

    Article  CAS  PubMed  Google Scholar 

  43. Tabin C (2005) Do we know anything about how left-right asymmetry is first established in the vertebrate embryo? J Mol Histol 36(5):317–323

    Article  PubMed  Google Scholar 

  44. Vandenberg LN, Levin M (2010) Far from solved: a perspective on what we know about early mechanisms of left-right asymmetry. Dev Dyn 239(12):3131–3146

    Article  PubMed  Google Scholar 

  45. Vandenberg LN, Levin M (2009) Perspectives and open problems in the early phases of left-right patterning. Semin Cell Dev Biol 20(4):456–463

    Article  PubMed  Google Scholar 

  46. Aw S, Levin M (2008) What's left in asymmetry? Dev Dyn 237(12):3453–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahmad N, Long S, Rebagliati M (2004) A southpaw joins the roster: the role of the zebrafish nodal-related gene southpaw in cardiac LR asymmetry. Trends Cardiovasc Med 14(2):43–49

    Article  CAS  PubMed  Google Scholar 

  48. Halpern ME, Liang JO, Gamse JT (2003) Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci 26(6):308–313

    Article  CAS  PubMed  Google Scholar 

  49. Baier H (2000) Zebrafish on the move: towards a behavior-genetic analysis of vertebrate vision. Curr Opin Neurobiol 10(4):451–455

    Article  CAS  PubMed  Google Scholar 

  50. Buske C, Gerlai R (2011) Shoaling develops with age in Zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 35(6):1409–1415

    Article  PubMed  Google Scholar 

  51. Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A 98(20):11691–11696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Engeszer RE, Ryan MJ, Parichy DM (2004) Learned social preference in zebrafish. Curr Biol 14(10):881–884

    Article  CAS  PubMed  Google Scholar 

  53. Fetcho JR, Liu KS (1998) Zebrafish as a model system for studying neuronal circuits and behavior. Ann N Y Acad Sci 860:333–345

    Article  CAS  PubMed  Google Scholar 

  54. Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15(4):2609–2622

    Article  CAS  PubMed  Google Scholar 

  55. Gerlai R, Lee V, Blaser R (2006) Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav 85(4):752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goldsmith P (2001) Modelling eye diseases in zebrafish. Neuroreport 12(13):A73–A77

    Article  CAS  PubMed  Google Scholar 

  57. Pan Y et al (2011) Chronic alcohol exposure induced gene expression changes in the zebrafish brain. Behav Brain Res 216(1):66–76

    Article  CAS  PubMed  Google Scholar 

  58. Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3(2):63–74

    Article  CAS  PubMed  Google Scholar 

  59. Hruscha A et al (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140(24):4982–4987

    Article  CAS  PubMed  Google Scholar 

  60. Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22(1):61–71

    Article  CAS  PubMed  Google Scholar 

  62. Knopfel T et al (2010) Toward the second generation of optogenetic tools. J Neurosci 30(45):14998–15004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Portugues R et al (2013) Optogenetics in a transparent animal: circuit function in the larval zebrafish. Curr Opin Neurobiol 23(1):119–126

    Article  CAS  PubMed  Google Scholar 

  64. Simmich J, Staykov E, Scott E (2012) Zebrafish as an appealing model for optogenetic studies. Prog Brain Res 196:145–162

    Article  CAS  PubMed  Google Scholar 

  65. Del Bene F, Wyart C (2012) Optogenetics: a new enlightenment age for zebrafish neurobiology. Dev Neurobiol 72(3):404–414

    Article  PubMed  Google Scholar 

  66. Wyart C, Del Bene F (2011) Let there be light: zebrafish neurobiology and the optogenetic revolution. Rev Neurosci 22(1):121–130

    Article  CAS  PubMed  Google Scholar 

  67. Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20(8):R371–R381

    Article  CAS  PubMed  Google Scholar 

  68. Kupffer C (1868) Beobachtungea uber die Entwicklung der Knochenfische. Arch Mikrob Anat 4:209–272

    Article  Google Scholar 

  69. Bisgrove BW et al (2005) Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer’s vesicle are required for specification of the zebrafish left-right axis. Dev Biol 287(2):274–288

    Article  CAS  PubMed  Google Scholar 

  70. Essner J et al (2002) Conserved function for embryonic nodal cilia. Nature 418:37–38

    Article  CAS  PubMed  Google Scholar 

  71. Essner JJ et al (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132(6):1247–1260

    Article  CAS  PubMed  Google Scholar 

  72. Amack JD, Yost HJ (2004) The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr Biol 14(8):685–690

    Article  CAS  PubMed  Google Scholar 

  73. Kramer-Zucker AG et al (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132(8):1907–1921

    Article  CAS  PubMed  Google Scholar 

  74. Amack JD, Wang X, Yost HJ (2007) Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer’s vesicle in zebrafish. Dev Biol 310(2):196–210

    Article  CAS  PubMed  Google Scholar 

  75. Becker-Heck A et al (2011) The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43(1):79-U105

    Article  CAS  Google Scholar 

  76. Francescatto L et al (2010) The activation of membrane targeted CaMK-II in the zebrafish Kupffer’s vesicle is required for left-right asymmetry. Development 137(16):2753–2762

    Article  CAS  PubMed  Google Scholar 

  77. Wang GL et al (2011) The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development 138(1):45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hamada H et al (2002) Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3(2):103–113

    Article  CAS  PubMed  Google Scholar 

  79. Ramsdell AF, Yost HJ (1998) Molecular mechanisms of vertebrate left-right development. Trends Genet 14(11):459–465

    Article  CAS  PubMed  Google Scholar 

  80. Lenhart KF et al (2013) Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry. PLoS Genet 9(1):e1003109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin SY, Burdine RD (2005) Brain asymmetry: switching from left to right. Curr Biol 15(9):R343–R345

    Article  CAS  PubMed  Google Scholar 

  82. Concha ML et al (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28(2):399–409

    Article  CAS  PubMed  Google Scholar 

  83. Bamford RN et al (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 26(3):365–369

    Article  CAS  PubMed  Google Scholar 

  84. Yan YT et al (1999) Conserved requirement for EGF-CFC genes in vertebrate left-right axis formation. Genes Dev 13(19):2527–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bisgrove BW, Essner JJ, Yost HJ (2000) Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127(16):3567–3579

    CAS  PubMed  Google Scholar 

  86. Gamse JT et al (2003) The parapineal mediates left-right asymmetry in the zebrafish diencephalon. Development 130(6):1059–1068

    Article  CAS  PubMed  Google Scholar 

  87. Aizawa H et al (2005) Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Curr Biol 15(3):238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gamse JT et al (2005) Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development 132(21):4869–4881

    Article  CAS  PubMed  Google Scholar 

  89. Amat J et al (2001) The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res 917(1):118–126

    Article  CAS  PubMed  Google Scholar 

  90. Haun F, Eckenrode TC, Murray M (1992) Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus. J Neurosci 12(8):3282–3290

    CAS  PubMed  Google Scholar 

  91. Lecourtier L, Kelly PH (2005) Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology 30(3):484–496

    Article  PubMed  Google Scholar 

  92. Lecourtier L, Neijt HC, Kelly PH (2004) Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. Eur J Neurosci 19(9):2551–2560

    Article  PubMed  Google Scholar 

  93. Murphy CA et al (1996) Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions. Behav Brain Res 81(1–2):43–52

    Article  CAS  PubMed  Google Scholar 

  94. Valjakka A et al (1998) The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res Bull 47(2):171–184

    Article  CAS  PubMed  Google Scholar 

  95. Barth KA et al (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol 15(9):844–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miklosi A, Andrew RJ (2006) The zebrafish as a model for behavioral studies. Zebrafish 3(2):227–234

    Article  PubMed  Google Scholar 

  97. Sovrano VA et al (1999) Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106(1–2):175–180

    Article  Google Scholar 

  98. Bisazza A, Pignatti R, Vallortigara G (1997) Laterality in detour behaviour: interspecific variation in poeciliid fish. Anim Behav 54(5):1273–1281

    Article  CAS  PubMed  Google Scholar 

  99. Facchin L, Bisazza A, Vallortigara G (1999) What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use. Behav Brain Res 103(2):229–234

    Article  CAS  PubMed  Google Scholar 

  100. Miklosi A, Andrew RJ (1999) Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105(2):199–205

    Article  CAS  PubMed  Google Scholar 

  101. Miklosi A, Andrew RJ, Gasparini S (2001) Role of right hemifield in visual control of approach to target in zebrafish. Behav Brain Res 122(1):57–65

    Article  CAS  PubMed  Google Scholar 

  102. Vallortigara G et al (2001) How birds use their eyes: opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Curr Biol 11(1):29–33

    Article  CAS  PubMed  Google Scholar 

  103. Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, Cambridge

    Book  Google Scholar 

  104. Gunturkun O, Kesch S (1987) Visual lateralization during feeding in pigeons. Behav Neurosci 101(3):433–435

    Article  CAS  PubMed  Google Scholar 

  105. Robins A et al (1998) Lateralized agonistic responses and hindlimb use in toads. Anim Behav 56:875–881

    Article  CAS  PubMed  Google Scholar 

  106. Yaman S et al (2003) Visual lateralization in the bottlenose dolphin (Tursiops truncatus): evidence for a population asymmetry? Behav Brain Res 142(1–2):109–114

    Article  PubMed  Google Scholar 

  107. Miklosi A, Andrew RJ, Savage H (1997) Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol Behav 63(1):127–135

    Article  CAS  PubMed  Google Scholar 

  108. Sovrano VA (2004) Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behav Brain Res 152(2):385–391

    Article  PubMed  Google Scholar 

  109. Dadda M et al (2010) Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res 206(2):208–215

    Article  PubMed  Google Scholar 

  110. Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. Ilar J 48(3):260–269

    Article  CAS  PubMed  Google Scholar 

  111. Beck CW, Slack JM (2001) An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol 2(10):REVIEWS1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mouche I, Malesic L, Gillardeaux O (2011) FETAX assay for evaluation of developmental toxicity. Methods Mol Biol 691:257–269

    Article  CAS  PubMed  Google Scholar 

  113. Pratt KG, Khakhalin AS (2013) Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 6(5):1057–1065

    Article  PubMed  PubMed Central  Google Scholar 

  114. Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248

    Article  CAS  PubMed  Google Scholar 

  115. Tseng AS, Levin M (2008) Tail regeneration in Xenopus laevis as a model for understanding tissue repair. J Dent Res 87(9):806–816

    Article  CAS  PubMed  Google Scholar 

  116. Gibbs KM, Chittur SV, Szaro BG (2011) Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. Eur J Neurosci 33(1):9–25

    Article  PubMed  Google Scholar 

  117. Lee-Liu D et al (2014) Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev 9:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Koide T, Hayata T, Cho KW (2005) Xenopus as a model system to study transcriptional regulatory networks. Proc Natl Acad Sci U S A 102(14):4943–4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ruben LN, Clothier RH, Balls M (2007) Cancer resistance in amphibians. Altern Lab Anim 35(5):463–470

    CAS  PubMed  Google Scholar 

  120. Lobikin M et al (2012) Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Phys Biol 9(6):065002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Robert J, Cohen N (2011) The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century. Dev Comp Immunol 35(9):916–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238(6):1249–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kinney KS, Cohen N (2009) Neural-immune system interactions in Xenopus. Front Biosci 14:112–129

    Article  CAS  Google Scholar 

  124. Callery EM (2006) There’s more than one frog in the pond: a survey of the Amphibia and their contributions to developmental biology. Semin Cell Dev Biol 17(1):80–92

    Article  PubMed  Google Scholar 

  125. Vandenberg LN, Lemire JM, Levin M (2013) It's never too early to get it right: a conserved role for the cytoskeleton in left-right asymmetry. Commun Integr Biol 6(6):e27155

    Article  PubMed  PubMed Central  Google Scholar 

  126. Schweickert A et al (2012) Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: a theoretical approach. Differentiation 83(2):S67–S77

    Article  CAS  PubMed  Google Scholar 

  127. Blum M et al (2009) Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev Dyn 238(6):1215–1225

    Article  PubMed  Google Scholar 

  128. Yost HJ (1991) Development of the left-right axis in amphibians. Ciba Found Symp 162:165–176, discussion 176–181

    CAS  PubMed  Google Scholar 

  129. Yost HJ (1990) Inhibition of proteoglycan synthesis eliminates left-right asymmetry in Xenopus laevis cardiac looping. Development 110(3):865–874

    CAS  PubMed  Google Scholar 

  130. Adams DS, Levin M (2006) Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis 44(11):530–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dush MK et al (2011) Heterotaxin: a TGF-beta signaling inhibitor identified in a multi-phenotype profiling screen in Xenopus embryos. Chem Biol 18(2):252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wheeler GN, Liu KJ (2012) Xenopus: an ideal system for chemical genetics. Genesis 50(3):207–218

    Article  CAS  PubMed  Google Scholar 

  133. Wheeler GN, Brandli AW (2009) Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn 238(6):1287–1308

    Article  CAS  PubMed  Google Scholar 

  134. Sampath K et al (1997) Functional differences among Xenopus nodal-related genes in left-right axis determination. Development 124(17):3293–3302

    CAS  PubMed  Google Scholar 

  135. Cheng AM et al (2000) The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. Development 127(5):1049–1061

    CAS  PubMed  Google Scholar 

  136. Vandenberg LN, Levin M (2010) Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin. Development 137(7):1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Levin M, Mercola M (1998) Gap junctions are involved in the early generation of left-right asymmetry. Dev Biol 203(1):90–105

    Article  CAS  PubMed  Google Scholar 

  138. Vandenberg LN, Lemire JM, Levin M (2013) Serotonin has early, cilia-independent roles in Xenopus left-right patterning. Dis Model Mech 6(1):261–268

    Article  CAS  PubMed  Google Scholar 

  139. Schweickert A et al (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17(1):60–66

    Article  CAS  PubMed  Google Scholar 

  140. Adams DS et al (2006) Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133(9):1657–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Aw S et al (2008) H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 125(3–4):353–372

    Article  CAS  PubMed  Google Scholar 

  142. Morokuma J, Blackiston D, Levin M (2008) KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 21(5–6):357–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Aw S et al (2010) The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos. Dev Biol 346:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Carneiro K et al (2011) Histone deacetylase activity is necessary for left-right patterning during vertebrate development. BMC Dev Biol 11(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vandenberg LN et al (2013) Rab GTPases are required for early orientation of the left-right axis in Xenopus. Mech Dev 130:254–271

    Article  CAS  PubMed  Google Scholar 

  146. Aw S, Levin M (2009) Is left-right asymmetry a form of planar cell polarity? Development 136(3):355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Levin M, Palmer AR (2007) Left-right patterning from the inside out: widespread evidence for intracellular control. Bioessays 29(3):271–287

    Article  CAS  PubMed  Google Scholar 

  148. Bunney TD, De Boer AH, Levin M (2003) Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development 130(20):4847–4858

    Article  CAS  PubMed  Google Scholar 

  149. Fukumoto T, Kema IP, Levin M (2005) Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr Biol 15(9):794–803

    Article  CAS  PubMed  Google Scholar 

  150. Qiu D et al (2005) Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry. Dev Dyn 234(1):176–189

    Article  CAS  PubMed  Google Scholar 

  151. Vandenberg LN, Pennarola BW, Levin M (2011) Low frequency vibrations disrupt left-right patterning in the Xenopus embryo. PLoS One 6(8):e23306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vandenberg LN, Stevenson C, Levin M (2012) Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner. PLoS One 7(12):e51473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Robins A, Rogers LJ (2006) Lateralized visual and motor responses in the green tree frog, Litoria caerulea. Anim Behav 72:843–852

    Article  Google Scholar 

  154. Bisazza A et al (1996) Right-pawedness in toads. Nature 379(6564):408

    Article  CAS  Google Scholar 

  155. Bisazza A et al (1997) Pawedness and motor asymmetries in toads. Laterality 2(1):49–64

    Article  CAS  PubMed  Google Scholar 

  156. Blackiston DJ, Levin M (2013) Inversion of left-right asymmetry alters performance of Xenopus tadpoles in nonlateralized cognitive tasks. Anim Behav 86(2):459–466

    Article  PubMed  PubMed Central  Google Scholar 

  157. Mcgill TE (1960) Response of the leopard frog to electric shock in an escape-learning situation. J Comp Physiol Psychol 53(4):443–445

    Article  Google Scholar 

  158. Thompson PA, Boice R (1975) Attempts to train frogs—review and experiments. J Biol Psychol 17(1):3–13

    Google Scholar 

  159. Blackiston D et al (2010) A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 5(12):e14370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Blackiston DJ, Levin M (2012) Aversive training methods in Xenopus laevis: general principles. Cold Spring Harb Protoc 2012(5)

    Google Scholar 

  161. Blackiston DJ, Levin M (2013) Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. J Exp Biol 216(Pt 6):1031–1040

    Article  PubMed  PubMed Central  Google Scholar 

  162. James EJ et al (2015) Valproate-induced neurodevelopmental deficits in Xenopus laevis tadpoles. J Neurosci 35(7):3218–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Khakhalin AS et al (2014) Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles. Eur J Neurosci 40(6):2948–2962

    Article  PubMed  Google Scholar 

  164. Spawn A, Aizenman CD (2012) Abnormal visual processing and increased seizure susceptibility result from developmental exposure to the biocide methylisothiazolinone. Neuroscience 205:194–204

    Article  CAS  PubMed  Google Scholar 

  165. Bell MR et al (2011) A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy. Nat Neurosci 14(4):505–512

    Article  CAS  PubMed  Google Scholar 

  166. Dong W et al (2009) Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J Neurophysiol 101(2):803–815

    Article  PubMed  Google Scholar 

  167. Pai VP et al (2012) Neurally derived tissues in Xenopus laevis embryos exhibit a consistent bioelectrical left-right asymmetry. Stem Cells Int 2012:353491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Gros J et al (2009) Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science 324(5929):941–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Levin M et al (1996) Laterality defects in conjoined twins. Nature 384(6607):321

    Article  CAS  PubMed  Google Scholar 

  170. Raya A, Belmonte JCI (2004) Unveiling the establishment of left-right asymmetry in the chick embryo. Mech Dev 121(9):1043–1054

    Article  CAS  PubMed  Google Scholar 

  171. Monsoro-Burq A, Le Douarin NM (2001) BMP4 plays a key role in left-right patterning in chick embryos by maintaining Sonic Hedgehog asymmetry. Mol Cell 7(4):789–799

    Article  CAS  PubMed  Google Scholar 

  172. Manner J (2001) Does an equivalent of the “ventral node” exist in chick embryos? A scanning electron microscopic study. Anat Embryol 203(6):481–490

    Article  CAS  PubMed  Google Scholar 

  173. Zhang Y, Levin M (2009) Left-right asymmetry in the chick embryo requires core planar cell polarity protein Vangl2. Genesis 47(11):719–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Raya A et al (2003) Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev 17(10):1213–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hibino T et al (2006) Ion flow regulates left-right asymmetry in sea urchin development. Dev Genes Evol 216(5):265–276

    Article  CAS  PubMed  Google Scholar 

  176. Shimeld SM, Levin M (2006) Evidence for the regulation of left-right asymmetry in Ciona intestinalis by ion flux. Dev Dyn 235(6):1543–1553

    Article  CAS  PubMed  Google Scholar 

  177. Dharmaretnam M, Andrew RJ (1994) Age-specific and stimulus-specific use of right and left eyes by the domestic chick. Anim Behav 48(6):1395–1406

    Article  Google Scholar 

  178. Vallortigara G, Regolin L, Pagni P (1999) Detour behaviour, imprinting and visual lateralization in the domestic chick. Cogn Brain Res 7(3):307–320

    Article  CAS  Google Scholar 

  179. Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73(2):236–253

    Article  CAS  PubMed  Google Scholar 

  180. Rogers LJ (2008) Development and function of lateralization in the avian brain. Brain Res Bull 76(3):235–244

    Article  PubMed  Google Scholar 

  181. Okumura T et al (2008) The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails. Dev Dyn 237(12):3497–3515

    Article  CAS  PubMed  Google Scholar 

  182. Speder P et al (2007) Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev 17(4):351–358

    Article  CAS  PubMed  Google Scholar 

  183. Xu J et al (2007) Polarity reveals intrinsic cell chirality. Proc Natl Acad Sci U S A 104(22):9296–9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen TH et al (2012) Left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics. Circ Res 110(4):551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tamada A et al (2010) Autonomous right-screw rotation of growth cone filopodia drives neurite turning. J Cell Biol 188(3):429–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Heacock AM, Agranoff BW (1977) Clockwise growth of neurites from retinal explants. Science 198(4312):64–66

    Article  CAS  PubMed  Google Scholar 

  187. Wan LQ, Vunjak-Novakovic G (2011) Micropatterning chiral morphogenesis. Commun Integr Biol 4(6):745–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wan LQ et al (2011) Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc Natl Acad Sci U S A 108(30):12295–12300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Aufderheide KJ, Frankel J, Williams NE (1980) Formation and positioning of surface-related structures in protozoa. Microbiol Rev 44(2):252–302

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Geimer S, Melkonian M (2004) The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 117(Pt 13):2663–2674

    Article  CAS  PubMed  Google Scholar 

  191. Munoz-Nortes T et al (2014) Symmetry, asymmetry, and the cell cycle in plants: known knowns and some known unknowns. J Exp Bot 65(10):2645–2655

    Article  CAS  PubMed  Google Scholar 

  192. Abe T, Thitamadee S, Hashimoto T (2004) Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiol 45(2):211–220

    Article  CAS  PubMed  Google Scholar 

  193. Costa MM et al (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132(22):5093–5101

    Article  CAS  PubMed  Google Scholar 

  194. Hashimoto T (2002) Molecular genetic analysis of left-right handedness in plants. Philos Trans R Soc Lond B Biol Sci 357(1422):799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Henley CL (2012) Possible origins of macroscopic left-right asymmetry in organisms. J Stat Phys 148(4):740–774

    Article  Google Scholar 

  196. Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417(6885):193–196

    Article  CAS  PubMed  Google Scholar 

  197. Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122(Pt 13):2208–2217

    Article  CAS  PubMed  Google Scholar 

  198. Blaser R, Gerlai R (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods 38(3):456–469

    Article  PubMed  Google Scholar 

  199. Delcourt J et al (2006) Comparing the EthoVision 2.3 system and a new computerized multitracking prototype system to measure the swimming behavior in fry fish. Behav Res Methods 38(4):704–710

    Article  PubMed  Google Scholar 

  200. Bass SL, Gerlai R (2008) Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186(1):107–117

    Article  PubMed  Google Scholar 

  201. Gerlai R, Fernandes Y, Pereira T (2009) Zebrafish (Danio rerio) responds to the animated image of a predator: towards the development of an automated aversive task. Behav Brain Res 201(2):318–324

    Article  PubMed  PubMed Central  Google Scholar 

  202. Speedie N, Gerlai R (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188(1):168–177

    Article  CAS  PubMed  Google Scholar 

  203. Lopez Patino MA et al (2008) Gender differences in zebrafish responses to cocaine withdrawal. Physiol Behav 95(1–2):36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Prober DA et al (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26(51):13400–13410

    Article  CAS  PubMed  Google Scholar 

  205. Zhdanova IV et al (2008) Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Res Bull 75(2–4):433–441

    Article  CAS  PubMed  Google Scholar 

  206. Sison M, Gerlai R (2010) Associative learning in zebrafish (Danio rerio) in the plus maze. Behav Brain Res 207(1):99–104

    Article  PubMed  Google Scholar 

  207. Al-Imari L, Gerlai R (2008) Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res 189(1):216–219

    Article  PubMed  Google Scholar 

  208. Gerlai R et al (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67(4):773–782

    Article  CAS  PubMed  Google Scholar 

  209. Berman GJ et al (2014) Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface 11(99)

    Google Scholar 

  210. Kabra M et al (2013) JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods 10(1):64–67

    Article  CAS  PubMed  Google Scholar 

  211. Maaswinkel H et al (2013) Dissociating the effects of habituation, black walls, buspirone and ethanol on anxiety-like behavioral responses in shoaling zebrafish. A 3D approach to social behavior. Pharmacol Biochem Behav 108:16–27

    Article  CAS  PubMed  Google Scholar 

  212. Maaswinkel H, Zhu L, Weng W (2012) The immediate and the delayed effects of buspirone on zebrafish (Danio rerio) in an open field test: a 3-D approach. Behav Brain Res 234(2):365–374

    Article  CAS  PubMed  Google Scholar 

  213. Maaswinkel H, Zhu LQ, Weng W (2013) Using an automated 3D-tracking system to record individual and shoals of adult zebrafish. J Vis Exp (82): 50681

    Google Scholar 

  214. Zhu L, Weng W (2007) Catadioptric stereo-vision system for the real-time monitoring of 3D behavior in aquatic animals. Physiol Behav 91(1):106–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Levin lab and of the behavioral science community for many useful discussions. M.L. gratefully acknowledges an Allen Discovery Center award from The Paul G. Allen Frontiers Group, and support of the Templeton World Charity Foundation (TWCF0089/AB55) and the G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Blackiston, D.J., Levin, M. (2017). Reversals of Bodies, Brains, and Behavior. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics