Skip to main content
Log in

Possible Origins of Macroscopic Left-Right Asymmetry in Organisms

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the “right-hand rule”; at the microscopic level, the cell’s cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A “phage capsid” is the protein container of a virus that infects bacteria.

  2. I am grateful to Victor Luria for this suggestion.

References

  1. Brown, N.A., Wolpert, L.: The development of handedness in left/right asymmetry. Development 109, 1–9 (1990)

    Google Scholar 

  2. Wood, W.B.: Left-right asymmetry in animal development. Annu. Rev. Cell Dev. Biol. 13, 53–82 (1997)

    Article  Google Scholar 

  3. Levin, M.: Left-right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122, 3–25 (2005)

    Article  Google Scholar 

  4. Wood, W.B.: The left-right polarity puzzle: determining embryonic handedness. PLoS Biol. 3, e292 (2005)

    Article  Google Scholar 

  5. Palmer, A.R.: Symmetry breaking and the evolution of development. Science 306, 828–833 (2004)

    Article  ADS  Google Scholar 

  6. Henley, C.L.: Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms. In: Lebedev, V., Feigel’man, M. (eds.) Advances in Theoretical Physics, Proc. Landau 100 Memorial Conf., Chernogolovka, June 2008. AIP Conf. Proc., vol. 1134. pp. 54–61 (2009)

    Google Scholar 

  7. Frank, F.C.: On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–464 (1953)

    Article  Google Scholar 

  8. Avertisov, V.A., Goldanskii, V.I., Kuz’min, V.A.: Handedness, origin of life, and evolution. Phys. Today 44, 33–41 (1991)

    Article  Google Scholar 

  9. Cooke, J.: Developmental mechanism and evolutionary origin of vertebrate left/right asymmetries. Biol. Rev. 79, 377–407 (2004)

    Article  Google Scholar 

  10. Hirokawa, N., Tanaka, Y., Okada, Y., Takeda, S.: Nodal flow and the generation of left-right asymmetry. Cell 125, 33–45 (2006)

    Article  Google Scholar 

  11. McManus, C.: Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies Atoms, and Cultures. Harvard University Press, Cambridge (2002), and references therein

    Google Scholar 

  12. Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M., Hirokawa, N.: Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998)

    Article  Google Scholar 

  13. Hamada, H., Meno, C., Watanabe, D., Saijoh, Y.: Establishment of vertebrate left-right asymmetry. Nat. Rev. Genet. 3, 103–113 (2002)

    Article  Google Scholar 

  14. Cartwright, J.H.E., Piro, O., Tuval, I.: Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc. Natl. Acad. Sci. USA 101, 7234–7239 (2004)

    Article  ADS  Google Scholar 

  15. Nonaka, S., Shiratori, H., Saijoh, Y., Hamada, H.: Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96–99 (2002)

    Article  ADS  Google Scholar 

  16. Levin, M.: The embryonic origins of left-right asymmetry. Crit. Rev. Oral Biol. Med. 15, 197–206 (2004)

    Article  Google Scholar 

  17. Adams, D.S., Robinson, K.R., Fukumoto, T., Yuan, S., Albertson, R.C., Yelick, P., Kuo, L., McSweeney, M., Levin, M.: Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133, 1657–1671 (2006)

    Article  Google Scholar 

  18. Aw, S., Adams, D.S., Qiu, D., Levin, M.: H, K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech. Dev. 125, 353–372 (2008).

    Article  Google Scholar 

  19. Wood, W.B.: Evidence of handedness in C. elegans embryos for early cell interactions determining cell fates. Nature 349, 536–538 (1991)

    Article  ADS  Google Scholar 

  20. Poole, R.J., Hobert, O.: Early embryonic patterning of neuronal left/right asymmetry in C. elegans. Curr. Biol. 16, 2279–2292 (2006)

    Article  Google Scholar 

  21. Sun, T., Walsh, C.A.: Molecular approaches to brain asymmetry and handedness. Nature Rev., Neurosci. 7, 655 (2006)

    Article  Google Scholar 

  22. Malashichev, Y.B., Wassersug, R.J.: Left and right in the amphibian world: which way to develop and where to turn? BioEssays 26, 512–522 (2004).

    Article  Google Scholar 

  23. Malashichev, Ye.B., Deckel, A.W. (eds.) Behavioral and Morphological Asymmetries in Vertebrates. Landes Bioscience, Georgetown (2006)

    Google Scholar 

  24. Halpern, M.E., Liang, J.O., Gamse, J.T.: Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci. 26, 308–313 (2003).

    Article  Google Scholar 

  25. Kawamura, R., Kakugo, A., Shikinaka, K., Osada, Y., Gong, J.P.: Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9, 2277 (2008)

    Article  Google Scholar 

  26. Grason, G.M., Bruinsma, R.F.: Chirality and equilibrium biopolymer bundles. Phys. Rev. Lett. 99, 098101 (2007) [4 pp.]

    Article  ADS  Google Scholar 

  27. Okumura, T., Utsuno, H., Kuroda, J., Gittenberger, E., Asami, T., Matsuno, K.: The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails. Dev. Dyn. 237, 3497–3515 (2008)

    Article  Google Scholar 

  28. Peskin, C.S., Odell, G.M., Oster, G.F.: Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65, 316–324 (1993)

    Article  ADS  Google Scholar 

  29. Shibazaki, Y., Shimizu, M., Kuroda, R.: Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14, 1462–1467 (2004)

    Article  Google Scholar 

  30. Kuroda, R., Endo, B., Abe, M., Shimizu, M.: Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature 462, 790–794 (2009)

    Article  ADS  Google Scholar 

  31. Pohl, C., Bao, Z., Pohl, C., Bao, Z.: Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis. Dev. Cell 19, 402–412 (2010)

    Article  Google Scholar 

  32. Manning, M.L., Foty, R.A., Steinberg, M.S., Schoetz, E.-M.: Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl. Acad. Sci. USA 107, 12517 (2010)

    Article  ADS  Google Scholar 

  33. Mabuchi, I.: Cleavage furrow: timing of emergence of contractile ring filaments and establishment of the contractile ring by filament bundling in sea urchin eggs. J. Cell Sci. 107, 1853–1862 (1994)

    Google Scholar 

  34. Kamasaki, T., Osumo, M., Mabuchi, I.: Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J. Cell Biol. 178, 765–771 (2007)

    Article  Google Scholar 

  35. Salbreux, G., Prost, J., Joanny, J.F.: Hydrodynamics of cellular cortical flows and the formation of contractile rings, Phys. Rev. Lett. 103, 058102 (2009)

    Article  ADS  Google Scholar 

  36. Åström, J.A., von Alfthau, S., Sunil Kumar, P.B., Karttunen, M.: Myosin motor mediated contraction is enough to produce cytokinesis in the absence of polymerisation. Soft Matter 6, 5375–5381 (2010)

    Article  ADS  Google Scholar 

  37. Gönczy, P., Rose, L.S.: Asymmetric cell division and axis formation in the embryo, movie 3. In: WormBook. http://wormbook.org/chapters/www_asymcelldiv/asymcelldiv.html

  38. Danilchik, M.V., Brown, E.E., Riegert, K.: Intrinsic chiral properties of the xenopus egg cortex: an early indicator of left-right asymmetry? Development 133, 4517–4526 (2006)

    Article  Google Scholar 

  39. Fürthauer, S., Strempel, M., Grill, S.W., Jülicher, F.: Generic theory of active chiral fluids. In preparation

  40. Strempel, M., Fürthauer, S., Grill, S.W., Jülicher, F.: Thin films of chiral motors. arXiv:1112.3492

  41. Mayer, M., Depken, M., Bois, J., Jülicher, F., Grill, S.W.: Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617–621 (2010)

    Article  ADS  Google Scholar 

  42. Beausang, J.F., Schroeder, H.W., Nelson, P.C., Goldman, Y.E.: Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay. Biophys. J. 95, 5820–5831 (2008)

    Article  ADS  Google Scholar 

  43. Nishizaka, T., Yagi, T., Tanaka, Y., Ishiwata, S.: Right-handed rotation of an actin filament in an in vitro motile system. Nature 361, 269–271 (1993)

    Article  ADS  Google Scholar 

  44. Vilfan, A.: Twirling motion of actin filaments in gliding assays with nonprocessive myosin motors. Biophys. J. 97, 1130 (2009)

    Article  ADS  Google Scholar 

  45. Cowan, C.R., Hyman, A.A.: Acto-myosin reorganization and PAR polarity in C. elegans. Development 134, 1035–1043 (2007)

    Article  Google Scholar 

  46. Ali, M.Y.: Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat. Struct. Biol. 9, 464 (2002)

    Article  Google Scholar 

  47. Morone, N., Fujiwara, T., Murase, K., Kasai, R.S., Ike, H., Yuasa, S., Usukura, J., Kusumi, A.: Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell Biol. 174, 851–862 (2006)

    Article  Google Scholar 

  48. Vavylonis, D., Wu, J.-Q., Hao, S., O’Shaughnessy, B., Pollard, T.D.: Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319, 97–100 (2008)

    Article  ADS  Google Scholar 

  49. Ziebert, F., Aranson, I.S.: Rheological and structural properties of dilute active filament solutions. Phys. Rev. E 77, 011918 (2008) [5 pp.]

    Article  ADS  Google Scholar 

  50. Nakadera, Y., Sutcharit, C., Ubukata, T., Seki, K., Utsuno, H., Panha, S., Asami, T.: Enantiomorphs differ in shape in opposite directions between populations. J. Evol. Biol. 23, 2377–2384 (2010).

    Article  Google Scholar 

  51. Hashimoto, T., Kato, T.: Cortical control of plant microtubules. Curr. Opin. Plant Biol. 9, 5–11 (2006).

    Article  Google Scholar 

  52. Thitamadee, S., Tuchihara, K., Hashimoto, T.: Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417, 193 (2002)

    Article  ADS  Google Scholar 

  53. Ishida, T., Kaneko, Y., Iwano, M., Hashimoto, T.: Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104, 8544–8549 (2007)

    Article  ADS  Google Scholar 

  54. Silverberg, J.L., Noar, R.D., Packer, M.S., Harrison, M.J., Henley, C.L., Cohen, I., Gerbode, S.J.: Unpublished

  55. Thompson, M.V., Holbrook, N.M.: Root-gel interactions and the root waving behavior of Arabidopsis. Plant Pathol. 135, 1822–1837 (2004)

    Google Scholar 

  56. Hashimoto, T.: Personal communication

  57. Wold, M.P., Gamow, R.I.: Fiber-composite model for helical growth in the Phycomyces cell wall. J. Theor. Biol. 159, 39–51 (1992)

    Article  Google Scholar 

  58. Dixit, R., Cyr, R.: Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16, 3274–3350 (2004)

    Article  Google Scholar 

  59. Ehrhardt, D.W.: Straighten up and fly right-microtubule dynamics and organization of non-centrosomal arrays in higher plants. Curr. Opin. Cell Biol. 20, 107–116 (2008)

    Article  Google Scholar 

  60. Chan, J., Sambade, A., Calder, G., Lloyd, C.: Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules. Plant Cell 21, 2298–2306 (2009)

    Article  Google Scholar 

  61. Shaw, S.L., Kamyar, R., Ehrhardt, D.W.: Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300, 1715–1718 (2003)

    Article  ADS  Google Scholar 

  62. Kawamura, E., Wasteneys, G.O.: MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J. Cell Sci. 121, 4114 (2008)

    Article  Google Scholar 

  63. Baulin, V.A., Marques, C.M., Thalmann, F.: Collision induced spatial organization of microtubules. Biophys. Chem. 128, 231–244 (2007)

    Article  Google Scholar 

  64. Hawkins, R.J., Tindemans, S.H., Mulder, B.M.: Model for the orientational ordering of the plant microtubule cortical array. Phys. Rev. E 82, 011911 (2010)

    Article  ADS  Google Scholar 

  65. Tindemans, S.H., Hawkins, R.J., Mulder, B.M.: Survival of the aligned: ordering of the plant cortical microtubule array. Phys. Rev. Lett. 104, 058103 (2010)

    Article  ADS  Google Scholar 

  66. Allard, J.F., Wasteneys, G.O., Cytrynbaum, E.N.: Mechanisms of self-organization of cortical microtubules in plants revealed by computational simulations. Mol. Biol. Cell 21, 278–286 (2010)

    Article  Google Scholar 

  67. Shi, X.-Q., Ma, Y.-Q.: Understanding phase behavior of plant cell cortex microtubule organization. Proc. Natl. Acad. Sci. USA 107, 11709–11714 (2010)

    Article  ADS  Google Scholar 

  68. Eren, E.C., Dixit, R., Gautam, N.: A three-dimensional computer simulation model reveals the mechanisms for self-organization of plant cortical microtubules into oblique arrays. Mol. Biol. Cell 21, 2674–2684 (2011)

    Article  Google Scholar 

  69. Deinum, E.E., Tindemans, S.H., Mulder, B.M.: Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array. Phys. Biol. 8, 056002 (2011)

    Article  ADS  Google Scholar 

  70. Eren, E.C., Gautam, N., Dixit, R.: Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton. Cytoskeleton 69, 144–154 (2012)

    Article  Google Scholar 

  71. Chan, J., Calder, G., Fox, S., Lloyd, C.: Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat. Cell Biol. 9, 171 (2007)

    Article  Google Scholar 

  72. Ambrose, C., Allard, J.F., Cytrynbaum, E.N., Wasteneys, G.O.: Nat. Commun. 2, 430 (2011) [12 pp.]

    Article  ADS  Google Scholar 

  73. Wasteneys, G.O., Ambrose, J.C.: Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 19, 62–71 (2009)

    Article  Google Scholar 

  74. Preston, R.D.: The case for multinet growth in growing walls of plant cells. Planta 155, 356–363 (1982)

    Article  Google Scholar 

  75. Shen, J.X., Henley, C.L.: Unpublished

  76. Allard, J.F., Ambrose, J.C., Wasteneys, G.O., Cytrynbaum, E.N.: A mechanochemical model explains interactions between cortical microtubules in plants. Biophys. J. 99, 1082–1090 (2010)

    Article  ADS  Google Scholar 

  77. Wiggins, C.H., Goldstein, R.E.: Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80, 3879 (1998).

    Article  ADS  Google Scholar 

  78. Levin, M.: Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embyronic asymmetry. Birth Defects Research Part C 78, 191–223 (2006)

    Article  Google Scholar 

  79. Heacock, A.M., Agranoff, B.W.: Clockwise growth of neurites from retinal explants. Science 198, 64–66 (1977)

    Article  ADS  Google Scholar 

  80. Tamada, A., Kawase, S., Murakami, F., Kamiguchi, H.: Autonomous right-screw rotation of growth cone filipodia drives neurite turning. J. Cell Biol. 188, 429–441 (2011)

    Article  Google Scholar 

  81. Romijn, H.F., Mud, M.T., Wolters, P.S., Corner, M.A.: Neurite formation in dissociated cerebral cortex in vitro: evidence for clockwise outgrowth and autotopic contacts. Brain Res. 192, 575–580 (1980)

    Article  Google Scholar 

  82. Hagmann, J., Dagan, D., Matus, A.I., Levitan, I.B.: Directional control of neurite outgrowth from cultured hippocampal neurons is modulated by the lectin concanavalin A. J. Neurobiol. 23, 354–363 (1992)

    Article  Google Scholar 

  83. Sanjana, N.E.: Quantitative analysis of axon elongation: a novel application of stochastic modeling techniques to long-term, high-resolution time-lapse microscopy of cortical neurons, PhD thesis. MIT (2010). URL: http://dspace.mit.edu/bitstream/handle/1721.1/58281/639302908.pdf

  84. Lionnet, T., Joubaud, S., Lavery, R., Bensimon, D., Croquette, V.: Wringing out DNA. Phys. Rev. Lett. 96, 178102 (2006)

    Article  ADS  Google Scholar 

  85. Gore, J., Bryant, Z., Nöllmann, M., Le, M.U., Cozzarelli, N.R., Bustamante, C.: DNA overwinds when stretched. Nature 442, 836 (2006)

    Article  ADS  Google Scholar 

  86. Kamien, R.D., Lubensky, T.C., Nelson, P., O’Hern, C.S.: Direct determination of DNA twist-stretch coupling. Europhys. Lett. 38, 237–242 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  87. Arrieumerlou, C., Meyer, T.: A local coupling model and compass parameter for eukaryotic chemotaxis. Dev. Cell 8, 215–227 (2005)

    Article  Google Scholar 

  88. Xu, J., van Kaymeulen, A., Wakida, N.M., Carlton, P., Berns, M.W., Bourne, H.R.: Polarity reveals intrinsic cell chirality. Proc. Natl. Acad. Sci. USA 104, 9296–9300 (2007)

    Article  ADS  Google Scholar 

  89. Chuan, T.-H., Hsu, J.J., Zhao, X., Guo, C., Wong, M.N., Huang, Y., Li, Z., Garfinkel, A., Ho, C.-M., Tintut, Y., Demer, L.L.: Left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics. Circ. Res. 110, 551–559 (2012)

    Article  Google Scholar 

  90. Wan, L.Q., Ronaldson, K., Park, M., Taylor, G., Zhang, Y., Gimble, J.M., Vunjak-Novakovic, G.: Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc. Natl. Acad. Sci. USA 108, 12295–12300 (2011)

    Article  Google Scholar 

  91. Spéder, P., Adam, G., Noselli, S.: Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature 440, 803–807 (2006)

    Article  ADS  Google Scholar 

  92. Hozumi, S., Maeda, R., Taniguchi, K., et al.: An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 440, 798–802 (2006)

    Article  ADS  Google Scholar 

  93. Spéder, P., Noselli, S.: Left-right asymmetry: class I myosins show the direction. Curr. Opin. Cell Biol. 19, 82–87 (2007)

    Article  Google Scholar 

  94. Taniguchi, K., Maeda, R., Ando, T., Okumura, T., Nakazawa, N., Hatori, R., Nakamura, M., Hozumi, S., Fujiwara, H., Matsuno, K.: Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333, 339 (2011)

    Article  ADS  Google Scholar 

  95. Lauga, W., DiLuzio, W.R., Whitesides, G.M., Stone, H.A.: Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006)

    Article  ADS  Google Scholar 

  96. DiLuzio, W.R., Turner, L., Mayer, M., Garstecki, P., Weibel, D.B., Berg, H.C., Whitesides, G.M.: Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005)

    Article  ADS  Google Scholar 

  97. Wu, Y., Hosu, B.G., Berg, H.C.: Microbubbles reveal chiral fluid flows in bacterial swarms. Proc. Natl. Acad. Sci. USA 108, 4147–4151 (2011)

    Article  ADS  Google Scholar 

  98. Ben-Jacob, E., Cohen, I., Shochet, O., Tenenbaum, A., Czirók, A., Vicsek, T.: Cooperative formation of chiral patterns during growth of bacterial colonies, Phys. Rev. Lett. 75, 2899 (1995)

    Article  ADS  Google Scholar 

  99. Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Csirok, A., Vicsek, T.: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46–49 (2004)

    Article  ADS  Google Scholar 

  100. Levine, H., Ben-Jacob, E., Cohen, E., Rappel, W.-J.: In: Proc. 45th IEEE Conference on Decision and Control, p. 5073 (2006)

  101. Mendelson, N.H.: Helical growth of Bacillus subtilis: a new model of cell growth. Proc. Natl. Acad. Sci. USA 73, 1740–1744 (1976)

    Article  ADS  Google Scholar 

  102. Varma, A., de Pedro, M.A., Young, K.D.: FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. J. Bacteriol. 189, 5692–5704 (2007)

    Article  Google Scholar 

  103. Jones, L.F., Carballido-Lopez, R., Errington, J.: Cell 104, 913 (2001)

    Article  Google Scholar 

  104. Wang, S., Furchtgott, L., Huang, K.C., Shaevitz, J.W.: Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proc. Natl. Acad. Sci. USA 109, E595–E604 (2012)

    Article  ADS  Google Scholar 

  105. Figge, R.M., Divakaruni, A.V., Gober, J.W.: MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol. 51, 1321–1332 (2004)

    Article  Google Scholar 

  106. Wolgemuth, C.W., Inclan, Y.F., Quan, J., Mukherjee, S., Oster, G., Koehl, M.A.: How to make a spiral bacterium. Phys. Biol. 2, 189–199 (2005)

    Article  ADS  Google Scholar 

  107. Mendelson, N.H., Sarlls, J.E., Wolgemuth, C.W., Goldstein, R.E.: Chiral self-propulsion of growing bacterial macrofibers on a solid surface. Phys. Rev. Lett. 84, 1627–1630 (2000)

    Article  ADS  Google Scholar 

  108. Mendelson, N.H., Thwaites, J.J., Kessler, J.O. Li, C.: Mec (1995)

  109. Andrews, S.S., Arkin, A.P.: A mechanical explanation for cytoskeletal rings and helices in bacteria. Biophys. J. 93, 1872–1884 (2007)

    Article  ADS  Google Scholar 

  110. Salje, J., van den Ent, F., de Boer, P., Löwe, J.: Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

I thank S. Grill, T. Hashimoto, F. Jülicher, M. Levin, V. Luria, N. Sanjana, S. Seung, E.D. Siggia, G.O. Wasteneys, N. Wingreen, R. Chachra, and J.X. Shen, for discussions and communications (and the last two for collaborations). This work was supported by the U.S. Dept. of Energy, grant DE-FG-ER45405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Henley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henley, C.L. Possible Origins of Macroscopic Left-Right Asymmetry in Organisms. J Stat Phys 148, 741–775 (2012). https://doi.org/10.1007/s10955-012-0520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0520-z

Keywords

Navigation