Addressing Functional Neurotoxicity Using the Microelectrode Array (MEA)

Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Early drug development requires tests for compound-induced neurotoxic effects, i.e., to investigate possible alterations of neuronal activity as a result of the test compound. In vivo and in vitro animal models transpire not to be overly predictive of neurotoxic effects in humans and furthermore are in contradiction to the efforts of the European Community to reduce the number of animal experiments. Consequently, alternatives to these animal model-based assays are currently being investigated. Human induced pluripotent stem cell (hiPSC)-derived neurons offer several advantages, including being of human origin and offering the possibility of developing disease models from patient-derived cells. The development of electrophysiological assays based on microelectrode array systems (MEA) allows one to study alterations of neuronal activity in samples of varying complexity ranging from single cells to neuronal networks. As a non-invasive method it supports not only acute but also long-term experiments for extended time periods. Here we describe how to record neuronal activity from neurons and provide exemplarily insights into a validation study for a commercially available hiPSC-derived neuronal cell type.

Key words

Microelectrode array MEA Multi-well Assay development Spike analysis Neuronal activity Threshold detection 

References

  1. 1.
    Dragunow M (2008) The adult human brain in preclinical drug development. Nat Rev Drug Discov 7:659–666. doi:10.1038/nrd2617 CrossRefPubMedGoogle Scholar
  2. 2.
    Peitz M, Jungverdorben J, Brustle O (2013) Disease-specific iPS cell models in neuroscience. Curr Mol Med 13:832–841. doi:10.2174/1566524011313050014 CrossRefPubMedGoogle Scholar
  3. 3.
    Imaizumi Y, Okano H (2014) Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem 129:388–399. doi:10.1111/jnc.12625 CrossRefPubMedGoogle Scholar
  4. 4.
    Vassos E, Collier DA, Holden S et al (2010) Penetrance for copy number variants associated with schizophrenia. Hum Mol Genet 19:3477–3481. doi:10.1093/hmg/ddq259 CrossRefPubMedGoogle Scholar
  5. 5.
    Thomas CA, Springer PA, Loeb GE et al (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74:61–66. doi:10.1016/0014-4827(72)90481-8
  6. 6.
    Potter SM (2001) Distributed processing in cultured neuronal networks. Prog Brain Res 130:49–62CrossRefPubMedGoogle Scholar
  7. 7.
    Stett A, Egert U, Guenther E et al (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377:486–495. doi:10.1007/s00216-003-2149-x CrossRefPubMedGoogle Scholar
  8. 8.
    Peri.4U – hiPSC Peripheral Neurons - AXIOGENESIS - iPSC Human Cardiomyocytes Neurons Hypertrophy Disease Model Cells. http://axiogenesis.com/products/neuronal-cells/peri-4u-hipsc-peripheral-neurons.html. Accessed 25 Feb 2016
  9. 9.
    Nyquest H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617–644CrossRefGoogle Scholar
  10. 10.
    Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169–184. doi:10.1023/A:1008832702585 CrossRefPubMedGoogle Scholar
  11. 11.
    Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420. doi:10.1038/nrn3241 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Canepari M, Bove M, Maeda E et al (1997) Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biol Cybern 77:153–162. doi:10.1007/s004220050376 CrossRefPubMedGoogle Scholar
  13. 13.
    Morefield SI, Keefer EW, Chapman KD, Gross GW (2000) Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens Bioelectron 15:383–396. doi:10.1016/S0956-5663(00)00095-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687. doi:10.1162/089976604774201631 CrossRefPubMedGoogle Scholar
  15. 15.
    Muthmann J-O, Amin H, Sernagor E et al (2015) Spike detection for large neural populations using high density multielectrode arrays. Front Neuroinform 9:28. doi:10.3389/fninf.2015.00028 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ness TV, Chintaluri C, Potworowski J et al (2015) Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13:403–426. doi:10.1007/s12021-015-9265-6 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Defranchi E, Novellino A, Whelan M et al (2011) Feasibility assessment of micro-electrode chip assay as a method of detecting neurotoxicity in vitro. Front Neuroeng 4:6. doi:10.3389/fneng.2011.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Singh AN, Barlas C, Singh S et al (1996) A neurochemical basis for the antipsychotic activity of loxapine: interactions with dopamine D1, D2, D4 and serotonin 5-HT2 receptor subtypes. J Psychiatry Neurosci 21:29–35PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kapur S, Zipursky R, Remington G et al (1997) PET evidence that loxapine is an equipotent blocker of 5-HT2 and D2 receptors: implications for the therapeutics of schizophrenia. Am J Psychiatry 154:1525–1529. doi:10.1176/ajp.154.11.1525 CrossRefPubMedGoogle Scholar
  20. 20.
    Kinney JL (1985) Nomifensine maleate: a new second-generation antidepressant. Clin Pharm 4:625–636PubMedGoogle Scholar
  21. 21.
    Fiedorowicz A, Figiel I, Kamińska B et al (2001) Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure. Brain Res 912:116–127. doi:10.1016/S0006-8993(01)02675-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Cho JS, Kim TH, Lim J-M, Song J-H (2008) Effects of eugenol on Na+ currents in rat dorsal root ganglion neurons. Brain Res 1243:53–62. doi:10.1016/j.brainres.2008.09.030 CrossRefPubMedGoogle Scholar
  23. 23.
    Moreira-Lobo DCA, Linhares-Siqueira ED, Cruz GMP et al (2010) Eugenol modifies the excitability of rat sciatic nerve and superior cervical ganglion neurons. Neurosci Lett 472:220–224. doi:10.1016/j.neulet.2010.02.009 CrossRefPubMedGoogle Scholar
  24. 24.
    Lindstrom J (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15:193–222. doi:10.1007/BF02740634 CrossRefPubMedGoogle Scholar
  25. 25.
    Yoshida T, Sakane N, Umekawa T, Kondo M (1994) Effect of nicotine on sympathetic nervous system activity of mice subjected to immobilization stress. Physiol Behav 55:53–57. doi:10.1016/0031-9384(94)90009-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Sewell RG, Nanry KP, Kennedy J et al (1985) Supra-additive toxic interaction of nicotine with antihistamines, and enhancement by the proconvulsant pentylenetetrazole. Pharmacol Biochem Behav 22:469–477CrossRefPubMedGoogle Scholar
  27. 27.
    Chen K, Wang J-J, Yung WH et al (2005) Excitatory effect of histamine on neuronal activity of rat globus pallidus by activation of H2 receptors in vitro. Neurosci Res 53:288–297. doi:10.1016/j.neures.2005.07.008 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang J, Han X-H, Li H-Z et al (2008) Histamine excites rat lateral vestibular nuclear neurons through activation of post-synaptic H2 receptors. Neurosci Lett 448:15–19. doi:10.1016/j.neulet.2008.10.027 CrossRefPubMedGoogle Scholar
  29. 29.
    EFSA (2008) Conclusion regarding the peer review of the pesticide risk assessment of the active substance mepiquat. EFSA Journal 6(7). http://dx.doi.org/10.2903%2Fj.efsa.2008.146r

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of ElectrophysiologyNMI Natural and Medical Sciences Institute at the University of TuebingenReutlingenGermany
  2. 2.Axiogenesis AGCologneGermany

Personalised recommendations