Skip to main content

Terminal Repeat Analysis of EBV Genomes

  • Protocol
  • First Online:
Epstein Barr Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1532))

Abstract

Epstein-Barr virus (EBV) was the first human virus associated directly with human malignancies. During EBV infection of various host cells the double-stranded linear EBV DNA carried by the virions undergoes circularization. Since there are variable numbers of terminal repetitions (TRs) at the ends of the linear EBV genome, the resulting circular episomes enclose a variable number of TRs. Thus, in cells carrying viral episomes, the sizes of the terminal restriction enzyme fragments of EBV is affected by the number of TRs (Raab-Traub and Flynn Cell 47:883-889, 1986). Southern blot analysis revealed that in monoclonal proliferations, arising from a single cell, there was only a single band representing the joined EBV termini, whereas multiple terminal restriction enzyme fragments that differ in size were characteristic for oligoclonal or polyclonal proliferations. Using suitable probes, one can distinguish the episomal form from the linear EBV genomes that are formed during lytic EBV replication or during integration into the host genome. TR analysis is a useful tool for the determination of EBV clonality in different clinical samples and in cell lines carrying EBV genomes. A single terminal restriction enzyme fragment may indicate EBV infection at an early phase of clonal cell proliferation, whereas polyclonal EBV genomes may derive from multiple infections of proliferating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raab-Traub N, Flynn K (1986) The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47(6):883–889

    Article  CAS  PubMed  Google Scholar 

  2. Zimmermann J, Hammerschmidt W (1995) Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J Virol 69(5):3147–3155

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Moody CA, Scott RS, Su T, Sixbey JW (2003) Length of Epstein-Barr virus termini as a determinant of epithelial cell clonal emergence. J Virol 77(15):8555–8561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  CAS  PubMed  Google Scholar 

  5. Feederle R, Shannon-Lowe C, Baldwin G, Delecluse HJ (2005) Defective infectious particles and rare packaged genomes produced by cells carrying terminal-repeat-negative Epstein-Barr virus. J Virol 79(12):7641–7647. doi:10.1128/JVI.79.12.7641-7647.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiu SH, Wu MC, Wu CC, Chen YC, Lin SF, Hsu JT et al (2014) Epstein-Barr virus BALF3 has nuclease activity and mediates mature virion production during the lytic cycle. J Virol 88(9):4962–4975. doi:10.1128/JVI.00063-14

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gulley ML, Raphael M, Lutz CT, Ross DW, Raab-Traub N (1992) Epstein-Barr virus integration in human lymphomas and lymphoid cell lines. Cancer 70(1):185–191

    Article  CAS  PubMed  Google Scholar 

  8. Fan H, Gulley ML (2001) Molecular methods for detecting Epstein-Barr virus (part ii): structural analysis of Epstein-Barr virus DNA as a marker of clonality. Methods Mol Med 49:313–319. doi:10.1385/1-59259-081-0:313

    CAS  PubMed  Google Scholar 

  9. Lewin N, Minarovits J, Weber G, Ehlin-Henriksson B, Wen T, Mellstedt H et al (1991) Clonality and methylation status of the Epstein-Barr virus (EBV) genomes in in vivo-infected EBV-carrying chronic lymphocytic leukemia (CLL) cell lines. Int J Cancer 48(1):62–66

    Article  CAS  PubMed  Google Scholar 

  10. Gulley ML, Eagan PA, Quintanilla-Martinez L, Picado AL, Smir BN, Childs C et al (1994) Epstein-Barr virus DNA is abundant and monoclonal in the Reed-Sternberg cells of Hodgkin's disease: association with mixed cellularity subtype and Hispanic American ethnicity. Blood 83(6):1595–1602

    CAS  PubMed  Google Scholar 

  11. Gulley ML, Pulitzer DR, Eagan PA, Schneider BG (1996) Epstein-Barr virus infection is an early event in gastric carcinogenesis and is independent of bcl-2 expression and p53 accumulation. Hum Pathol 27(1):20–27

    Article  CAS  PubMed  Google Scholar 

  12. van de Rijn M, Cleary ML, Variakojis D, Warnke RA, Chang PP, Kamel OW (1996) Epstein-Barr virus clonality in lymphomas occurring in patients with rheumatoid arthritis. Arthritis Rheum 39(4):638–642

    Article  PubMed  Google Scholar 

  13. Lin CT, Chen W, Hsu MM, Dee AN. Clonal versus polyclonal Epstein-Barr virus infection in nasopharyngeal carcinoma cell lines. Laboratory investigation; a journal of technical methods and pathology. 1997;76(6):793-8.

    Google Scholar 

  14. Ryan JL, Kaufmann WK, Raabtraub N, Oglesbee SE, Carey LA, Gulley ML (2006) Clonal evolution of lymphoblastoid cell lines. Lab Invest 86(11):1193–200. doi:10.1038/labinvest.3700472

    Article  CAS  PubMed  Google Scholar 

  15. Arai A, Yamaguchi T, Komatsu H, Imadome K, Kurata M, Nagata K et al (2014) Infectious mononucleosis accompanied by clonal proliferation of EBV-infected cells and infection of CD8-positive cells. Int J Hematol 99(5):671–675. doi:10.1007/s12185-014-1548-4

    Article  PubMed  Google Scholar 

  16. Brown NA, Liu CR, Wang YF, Garcia CR (1988) B-cell lymphoproliferation and lymphomagenesis are associated with clonotypic intracellular terminal regions of the Epstein-Barr virus. J Virol 62(3):962–969

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Raab-Traub N, Rajadurai P, Flynn K, Lanier AP (1991) Epstein-Barr virus infection in carcinoma of the salivary gland. J Virol 65(12):7032–7036

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pathmanathan R, Prasad U, Chandrika G, Sadler R, Flynn K, Raab-Traub N (1995) Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol 146(6):1355–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N (1995) Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 333(11):693–698. doi:10.1056/NEJM199509143331103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Bánáti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bánáti, F., Koroknai, A., Szenthe, K. (2017). Terminal Repeat Analysis of EBV Genomes. In: Minarovits, J., Niller, H. (eds) Epstein Barr Virus. Methods in Molecular Biology, vol 1532. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6655-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6655-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6653-0

  • Online ISBN: 978-1-4939-6655-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics