Skip to main content

Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish

  • Protocol
  • First Online:
Cell Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1524))

Abstract

The cell division cycle is controlled by a complex regulatory network which ensures that the phases of the cell cycle are executed in the right order. This regulatory network receives signals from the environment, monitors the state of the DNA, and decides timings of cell cycle events. The underlying transcriptional and post-translational regulatory interactions lead to complex dynamical responses, such as the oscillations in the levels of cell cycle proteins driven by intertwined biochemical reactions. A cell moves between different phases of its cycle similar to a dynamical system switching between its steady states. The complex molecular network driving these phases has been investigated in previous computational systems biology studies. Here, we review the critical physiological and molecular transitions that occur in the cell cycle and discuss the role of mathematical modeling in elucidating these transitions and understand cell cycle synchronization.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6603-5_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1:E13–E15

    Article  CAS  PubMed  Google Scholar 

  2. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  CAS  PubMed  Google Scholar 

  3. Alon U (ed) (2006) An introduction to systems biology: design principles of biological circuits. CRC press, Boca Raton, FL

    Google Scholar 

  4. Kirschner MW (2005) The meaning of systems biology. Cell 121:503

    Article  CAS  PubMed  Google Scholar 

  5. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  6. Koch AL, Schaechter M (1962) A model for statistics of the cell division process. J Gen Microbiol 29:435–454

    Article  CAS  PubMed  Google Scholar 

  7. Csikasz-Nagy A (2009) Computational systems biology of the cell cycle. Brief Bioinform 10:424–434

    Article  CAS  PubMed  Google Scholar 

  8. Csikasz-Nagy A, Battogtokh D, Chen KC et al (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 90:4361–4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Article  CAS  PubMed  Google Scholar 

  10. Morgan DO (ed) (2006) The cell cycle: principles of control. New Science Press, London

    Google Scholar 

  11. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  CAS  PubMed  Google Scholar 

  12. Sveiczer A, Novak B, Mitchison JM (2004) Size control in growing yeast and mammalian cells. Theor Biol Med Model 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bartek J, Bartkova J, Lukas J (1996) The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol 8:805–814

    Article  CAS  PubMed  Google Scholar 

  14. Nasmyth K (1996) Viewpoint: putting the cell cycle in order. Science 274:1643–1645

    Article  CAS  PubMed  Google Scholar 

  15. Chen KC, Csikasz-Nagy A, Gyorffy B et al (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11:369–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12:405–412

    Article  CAS  PubMed  Google Scholar 

  17. Ciliberto A, Shah JV (2009) A quantitative systems view of the spindle assembly checkpoint. EMBO J 28:2162–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  CAS  PubMed  Google Scholar 

  20. Novak B, Tyson JJ, Gyorffy B et al (2007) Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol 9:724–728

    Article  CAS  PubMed  Google Scholar 

  21. Tyson JJ, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation. Bioessays 24:1095–1109

    Article  CAS  PubMed  Google Scholar 

  22. Chen KC, Calzone L, Csikasz-Nagy A et al (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cross FR (2003) Two redundant oscillatory mechanisms in the yeast cell cycle. Dev Cell 4:741–752

    Article  CAS  PubMed  Google Scholar 

  24. Hong CI, Zámborszky J, Baek M et al (2014) Circadian rhythms synchronize mitosis in Neurospora crassa. Proc Natl Acad Sci 111:1397–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Masri S, Cervantes M, Sassone-Corsi P (2013) The circadian clock and cell cycle: interconnected biological circuits. Curr Opin Cell Biol 25:730–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bánfalvi G (ed) (2011) Cell cycle synchronization: methods and protocols, 1st edn, Methods in molecular biology. Humana Press, Totowa, NJ

    Google Scholar 

  27. Jackman J, O’Connor PM (2001) Methods for synchronizing cells at specific stages of the cell cycle. Curr Protoc Cell Biol 8.3.1–8.3.20

    Google Scholar 

  28. Marsh L, Neiman AM, Herskowitz I (1991) Signal transduction during pheromone response in yeast. Annu Rev Cell Biol 7:699–728

    Article  CAS  PubMed  Google Scholar 

  29. Hartwell LH, Mortimer RK, Culotti J et al (1973) Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74:267–286

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Charvin G, Cross F, Siggia E (2009) Forced periodic expression of G1 cyclins phase-locks the budding yeast cell cycle. Proc Natl Acad Sci 106:6632–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nurse P (1975) Genetic control of cell size at cell division in yeast. Nature 256:547–551

    Article  CAS  PubMed  Google Scholar 

  32. Evans T, Rosenthal ET, Youngblom J et al (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  CAS  PubMed  Google Scholar 

  33. Nasmyth K (2001) A prize for proliferation. Cell 107:689–701

    Article  CAS  PubMed  Google Scholar 

  34. Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160

    Article  CAS  PubMed  Google Scholar 

  35. Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13:2039–2058

    Article  CAS  PubMed  Google Scholar 

  36. Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci U S A 88:9107–9111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci U S A 88:7328–7332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tyson JJ (2007) Bringing cartoons to life. Nature 445:823

    Article  CAS  PubMed  Google Scholar 

  39. Cross FR, Archambault V, Miller M et al (2002) Testing a mathematical model for the yeast cell cycle. Mol Biol Cell 13:52–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Queralt E, Lehane C, Novak B et al (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125:719–732

    Article  CAS  PubMed  Google Scholar 

  41. Di Talia S, Skotheim JM, Bean JM et al (2007) The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448:947–951

    Article  PubMed  Google Scholar 

  42. Barik D, Baumann WT, Paul MR et al (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6:405

    Article  PubMed  PubMed Central  Google Scholar 

  43. Laomettachit T (2011) Mathematical modeling approaches for dynamical analysis of protein regulatory networks with applications to the budding yeast cell cycle and the circadian rhythm in cyanobacteria. Dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  44. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585

    Article  CAS  PubMed  Google Scholar 

  45. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3, e1672

    Article  PubMed  PubMed Central  Google Scholar 

  46. Faure A, Thieffry D (2009) Logical modelling of cell cycle control in eukaryotes: a comparative study. Mol Biosyst 5:1569–1581

    Article  CAS  PubMed  Google Scholar 

  47. Heath J, Kwiatkowska M, Norman G et al (2008) Probabilistic model checking of complex biological pathways. Theor Comput Sci 391:239–257

    Article  Google Scholar 

  48. Monteiro PT, Ropers D, Mateescu R et al (2008) Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics 24:i227–i233

    Article  PubMed  Google Scholar 

  49. Ballarini P, Mazza T, Palmisano A et al (2009) Studying irreversible transitions in a model of cell cycle regulation. Electron Notes Theor Comput Sci 232:39–53

    Article  Google Scholar 

  50. Pozarowski P, Darzynkiewicz, Z. (2004). Analysis of cell cycle by flow cytometry. In: Checkpoint Controls and Cancer: Volume 2: Activation and Regulation Protocols, Springer, pp 301–311.

    Google Scholar 

  51. Mura I, Csikasz-Nagy A (2008) Stochastic Petri Net extension of a yeast cell cycle model. J Theor Biol 254:850–860

    Article  PubMed  Google Scholar 

  52. Palmisano A (2010) Coding biological systems in a stochastic framework: the case study of budding yeast cell cycle. Proceedings of 1st international conference on bioinformatics

    Google Scholar 

  53. Nugroho TT, Mendenhall MD (1994) An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 14:3320–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romanel A, Jensen LJ, Cardelli L et al (2012) Transcriptional regulation is a major controller of cell cycle transition dynamics. PLoS One 7, e29716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hartwell LH, Unger MW (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75:422–435

    Article  CAS  PubMed  Google Scholar 

  56. Johnston GC, Pringle JR, Hartwell LH (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105:79–98

    Article  CAS  PubMed  Google Scholar 

  57. Lord PG, Wheals AE (1981) Variability in individual cell cycles of Saccharomyces cerevisiae. J Cell Sci 50:361–376

    CAS  PubMed  Google Scholar 

  58. Ferrezuelo F, Colomina N, Palmisano A et al (2012) The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat Commun 3:1012

    Article  PubMed  Google Scholar 

  59. Oguz C, Palmisano A, Laomettachit T et al (2014) A stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2. PLoS One 9:e96726

    Article  PubMed  PubMed Central  Google Scholar 

  60. Oguz C, Laomettachit T, Chen KC et al (2013) Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model. BMC Syst Biol 7:53

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schaber J, Klipp E (2011) Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. Curr Opin Biotechnol 22:109–116

    Article  CAS  PubMed  Google Scholar 

  62. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning, Springer, pp. 760–766

    Google Scholar 

  63. Price K, Storn RM, Lampinen JA (eds) (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media, New York, NY

    Google Scholar 

  64. Chaouiya C, Bérenguier D, Keating SM et al (2013) SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst Biol 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hucka M, Finney A (2005) Escalating model sizes and complexities call for standardized forms of representation. Mol Syst Biol 1(2005):0011

    PubMed  Google Scholar 

  66. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  67. Palmisano A, Hoops S, Watson L et al (2014) Multistate model builder (MSMB): a flexible editor for compact biochemical models. BMC Syst Biol 8:42

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclaimer

This article was prepared while Alida Palmisano and Cihan Oguz were employed at Virginia Tech. The opinions expressed in this article are the authors’ own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alida Palmisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Palmisano, A., Zámborszky, J., Oguz, C., Csikász-Nagy, A. (2017). Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish . In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 1524. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6603-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6603-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6602-8

  • Online ISBN: 978-1-4939-6603-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics