Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish

  • Alida Palmisano
  • Judit Zámborszky
  • Cihan Oguz
  • Attila Csikász-Nagy
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1524)

Abstract

The cell division cycle is controlled by a complex regulatory network which ensures that the phases of the cell cycle are executed in the right order. This regulatory network receives signals from the environment, monitors the state of the DNA, and decides timings of cell cycle events. The underlying transcriptional and post-translational regulatory interactions lead to complex dynamical responses, such as the oscillations in the levels of cell cycle proteins driven by intertwined biochemical reactions. A cell moves between different phases of its cycle similar to a dynamical system switching between its steady states. The complex molecular network driving these phases has been investigated in previous computational systems biology studies. Here, we review the critical physiological and molecular transitions that occur in the cell cycle and discuss the role of mathematical modeling in elucidating these transitions and understand cell cycle synchronization.

Key words

Systems biology Bistability Oscillation Mathematical and computational models Checkpoints Budding yeast Hysteresis Synchronization Periodic forcing 

References

  1. 1.
    Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1:E13–E15CrossRefPubMedGoogle Scholar
  2. 2.
    Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231CrossRefPubMedGoogle Scholar
  3. 3.
    Alon U (ed) (2006) An introduction to systems biology: design principles of biological circuits. CRC press, Boca Raton, FLGoogle Scholar
  4. 4.
    Kirschner MW (2005) The meaning of systems biology. Cell 121:503CrossRefPubMedGoogle Scholar
  5. 5.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664CrossRefPubMedGoogle Scholar
  6. 6.
    Koch AL, Schaechter M (1962) A model for statistics of the cell division process. J Gen Microbiol 29:435–454CrossRefPubMedGoogle Scholar
  7. 7.
    Csikasz-Nagy A (2009) Computational systems biology of the cell cycle. Brief Bioinform 10:424–434CrossRefPubMedGoogle Scholar
  8. 8.
    Csikasz-Nagy A, Battogtokh D, Chen KC et al (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 90:4361–4379CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508CrossRefPubMedGoogle Scholar
  10. 10.
    Morgan DO (ed) (2006) The cell cycle: principles of control. New Science Press, LondonGoogle Scholar
  11. 11.
    Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323CrossRefPubMedGoogle Scholar
  12. 12.
    Sveiczer A, Novak B, Mitchison JM (2004) Size control in growing yeast and mammalian cells. Theor Biol Med Model 1:12CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bartek J, Bartkova J, Lukas J (1996) The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol 8:805–814CrossRefPubMedGoogle Scholar
  14. 14.
    Nasmyth K (1996) Viewpoint: putting the cell cycle in order. Science 274:1643–1645CrossRefPubMedGoogle Scholar
  15. 15.
    Chen KC, Csikasz-Nagy A, Gyorffy B et al (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11:369–391CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12:405–412CrossRefPubMedGoogle Scholar
  17. 17.
    Ciliberto A, Shah JV (2009) A quantitative systems view of the spindle assembly checkpoint. EMBO J 28:2162–2173CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66:155CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634CrossRefPubMedGoogle Scholar
  20. 20.
    Novak B, Tyson JJ, Gyorffy B et al (2007) Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol 9:724–728CrossRefPubMedGoogle Scholar
  21. 21.
    Tyson JJ, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation. Bioessays 24:1095–1109CrossRefPubMedGoogle Scholar
  22. 22.
    Chen KC, Calzone L, Csikasz-Nagy A et al (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841–3862CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cross FR (2003) Two redundant oscillatory mechanisms in the yeast cell cycle. Dev Cell 4:741–752CrossRefPubMedGoogle Scholar
  24. 24.
    Hong CI, Zámborszky J, Baek M et al (2014) Circadian rhythms synchronize mitosis in Neurospora crassa. Proc Natl Acad Sci 111:1397–1402CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Masri S, Cervantes M, Sassone-Corsi P (2013) The circadian clock and cell cycle: interconnected biological circuits. Curr Opin Cell Biol 25:730–734CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bánfalvi G (ed) (2011) Cell cycle synchronization: methods and protocols, 1st edn, Methods in molecular biology. Humana Press, Totowa, NJGoogle Scholar
  27. 27.
    Jackman J, O’Connor PM (2001) Methods for synchronizing cells at specific stages of the cell cycle. Curr Protoc Cell Biol 8.3.1–8.3.20Google Scholar
  28. 28.
    Marsh L, Neiman AM, Herskowitz I (1991) Signal transduction during pheromone response in yeast. Annu Rev Cell Biol 7:699–728CrossRefPubMedGoogle Scholar
  29. 29.
    Hartwell LH, Mortimer RK, Culotti J et al (1973) Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74:267–286PubMedPubMedCentralGoogle Scholar
  30. 30.
    Charvin G, Cross F, Siggia E (2009) Forced periodic expression of G1 cyclins phase-locks the budding yeast cell cycle. Proc Natl Acad Sci 106:6632–6637CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nurse P (1975) Genetic control of cell size at cell division in yeast. Nature 256:547–551CrossRefPubMedGoogle Scholar
  32. 32.
    Evans T, Rosenthal ET, Youngblom J et al (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396CrossRefPubMedGoogle Scholar
  33. 33.
    Nasmyth K (2001) A prize for proliferation. Cell 107:689–701CrossRefPubMedGoogle Scholar
  34. 34.
    Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160CrossRefPubMedGoogle Scholar
  35. 35.
    Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13:2039–2058CrossRefPubMedGoogle Scholar
  36. 36.
    Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci U S A 88:9107–9111CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci U S A 88:7328–7332CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tyson JJ (2007) Bringing cartoons to life. Nature 445:823CrossRefPubMedGoogle Scholar
  39. 39.
    Cross FR, Archambault V, Miller M et al (2002) Testing a mathematical model for the yeast cell cycle. Mol Biol Cell 13:52–70CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Queralt E, Lehane C, Novak B et al (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125:719–732CrossRefPubMedGoogle Scholar
  41. 41.
    Di Talia S, Skotheim JM, Bean JM et al (2007) The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448:947–951CrossRefPubMedGoogle Scholar
  42. 42.
    Barik D, Baumann WT, Paul MR et al (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6:405CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Laomettachit T (2011) Mathematical modeling approaches for dynamical analysis of protein regulatory networks with applications to the budding yeast cell cycle and the circadian rhythm in cyanobacteria. Dissertation, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  44. 44.
    Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585CrossRefPubMedGoogle Scholar
  45. 45.
    Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3, e1672CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Faure A, Thieffry D (2009) Logical modelling of cell cycle control in eukaryotes: a comparative study. Mol Biosyst 5:1569–1581CrossRefPubMedGoogle Scholar
  47. 47.
    Heath J, Kwiatkowska M, Norman G et al (2008) Probabilistic model checking of complex biological pathways. Theor Comput Sci 391:239–257CrossRefGoogle Scholar
  48. 48.
    Monteiro PT, Ropers D, Mateescu R et al (2008) Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics 24:i227–i233CrossRefPubMedGoogle Scholar
  49. 49.
    Ballarini P, Mazza T, Palmisano A et al (2009) Studying irreversible transitions in a model of cell cycle regulation. Electron Notes Theor Comput Sci 232:39–53CrossRefGoogle Scholar
  50. 50.
    Pozarowski P, Darzynkiewicz, Z. (2004). Analysis of cell cycle by flow cytometry. In: Checkpoint Controls and Cancer: Volume 2: Activation and Regulation Protocols, Springer, pp 301–311.Google Scholar
  51. 51.
    Mura I, Csikasz-Nagy A (2008) Stochastic Petri Net extension of a yeast cell cycle model. J Theor Biol 254:850–860CrossRefPubMedGoogle Scholar
  52. 52.
    Palmisano A (2010) Coding biological systems in a stochastic framework: the case study of budding yeast cell cycle. Proceedings of 1st international conference on bioinformaticsGoogle Scholar
  53. 53.
    Nugroho TT, Mendenhall MD (1994) An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 14:3320–3328CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Romanel A, Jensen LJ, Cardelli L et al (2012) Transcriptional regulation is a major controller of cell cycle transition dynamics. PLoS One 7, e29716CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hartwell LH, Unger MW (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75:422–435CrossRefPubMedGoogle Scholar
  56. 56.
    Johnston GC, Pringle JR, Hartwell LH (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105:79–98CrossRefPubMedGoogle Scholar
  57. 57.
    Lord PG, Wheals AE (1981) Variability in individual cell cycles of Saccharomyces cerevisiae. J Cell Sci 50:361–376PubMedGoogle Scholar
  58. 58.
    Ferrezuelo F, Colomina N, Palmisano A et al (2012) The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat Commun 3:1012CrossRefPubMedGoogle Scholar
  59. 59.
    Oguz C, Palmisano A, Laomettachit T et al (2014) A stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2. PLoS One 9:e96726CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Oguz C, Laomettachit T, Chen KC et al (2013) Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model. BMC Syst Biol 7:53CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Schaber J, Klipp E (2011) Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. Curr Opin Biotechnol 22:109–116CrossRefPubMedGoogle Scholar
  62. 62.
    Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning, Springer, pp. 760–766Google Scholar
  63. 63.
    Price K, Storn RM, Lampinen JA (eds) (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media, New York, NYGoogle Scholar
  64. 64.
    Chaouiya C, Bérenguier D, Keating SM et al (2013) SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst Biol 7:135CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hucka M, Finney A (2005) Escalating model sizes and complexities call for standardized forms of representation. Mol Syst Biol 1(2005):0011PubMedGoogle Scholar
  66. 66.
    Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531CrossRefPubMedGoogle Scholar
  67. 67.
    Palmisano A, Hoops S, Watson L et al (2014) Multistate model builder (MSMB): a flexible editor for compact biochemical models. BMC Syst Biol 8:42CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Alida Palmisano
    • 1
    • 2
  • Judit Zámborszky
    • 3
  • Cihan Oguz
    • 1
  • Attila Csikász-Nagy
    • 4
    • 5
  1. 1.Department of Biological SciencesVirginia TechBlacksburgUSA
  2. 2.Department of Computer ScienceVirginia TechBlacksburgUSA
  3. 3.Hungarian Academy of Sciences, Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
  4. 4.Randall Division of Cell and Molecular Biophysics, Institute for Mathematical and Molecular BiomedicineKing’s College LondonLondonUK
  5. 5.Faculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary

Personalised recommendations