Skip to main content

Stable Discoidal Bicelles: A Platform of Lipid Nanocarriers for Cellular Delivery

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1522))

Abstract

Bicellar mixtures have been used as alignable membrane substrates for the structural characterization of membrane-associated proteins. Most recently, it has been shown that bicelles can serve as nanocarriers to effectively deliver hydrophobic molecules to cancer cells with a 3- to 10-fold enhancement compared to that of chemically identical liposomes. In this chapter, a detailed preparation protocol, common structural characterization methods, the structural stability and the cellular uptake of bicellar nanodisks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanders CR, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34(12):4030–4040

    Article  CAS  PubMed  Google Scholar 

  2. Diller A, Loudet C, Aussenac F et al (2009) Bicelles: a natural ‘molecular goniometer’ for structural, dynamical and topological studies of molecules in membranes. Biochimie 91(6):744–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Naito A (2009) Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl. Magn Reson 36(2):67–76

    CAS  Google Scholar 

  4. Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768(12):3098–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prosser RS, Evanics F, Kitevski JL et al (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45(28):8453–8465

    Article  CAS  PubMed  Google Scholar 

  6. Johansson LC, Wohri AB, Katona G et al (2009) Membrane protein crystallization from lipidic phases. Curr Opin Struct Biol 19(4):372–378

    Article  CAS  PubMed  Google Scholar 

  7. Kimble-Hill AC (2013) A review of factors affecting the success of membrane protein crystallization using bicelles. Front Biol 8(3):261–272

    Article  Google Scholar 

  8. Poulos S, Morgan JL, Zimmer J et al (2015) Bicelles coming of age: an empirical approach to bicelle crystallization. Methods Enzymol 557:393–416

    Article  CAS  PubMed  Google Scholar 

  9. Mills JO, Holland LA (2004) Membrane-mediated capillary electrophoresis: interaction of cationic peptides with bicelles. Electrophoresis 25(9):1237–1242

    Article  CAS  PubMed  Google Scholar 

  10. Barbosa-Barros L, Barba C, Rodriguez G et al (2009) Lipid nanostructures: self-assembly and effect on skin properties. Mol Pharm 6(4):1237–1245

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez G, Barbosa-Barros L, Rubio L et al (2009) Conformational changes in stratum corneum lipids by effect of bicellar systems. Langmuir 25(18):10595–10603

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez G, Barbosa-Barros L, Rubio L et al (2015) Bicelles: New Lipid Nanosystems for Dermatological Applications. J Biomed Nanotechnol 11(2):282–290

    Article  CAS  PubMed  Google Scholar 

  13. Aresh, W Liu, Y., Sine, J. et al.The Morphology of Self-Assembled Lipid-Based Nanoparticles Affects Their Uptake by Cancer Cells. Journal of Biomedical Nanotechnology (in press).

    Google Scholar 

  14. Katsaras J, Harroun TA, Pencer J et al (2005) "Bicellar" lipid mixtures as used in biochemical and biophysical studies. Naturwissenschaften 92(8):355–366

    Article  CAS  PubMed  Google Scholar 

  15. Andersson A, Maler L (2006) Size and shape of fast-tumbling bicelles as determined by translational diffusion. Langmuir 22(6):2447–2449

    Article  CAS  PubMed  Google Scholar 

  16. Beaugrand M, Arnold AA, Henin J et al (2014) Lipid concentration and molar ratio boundaries for the use of isotropic bicelles. Langmuir 30(21):6162–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lind J, Nordin J, Maler L (2008) Lipid dynamics in fast-tumbling bicelles with varying bilayer thickness: effect of model transmembrane peptides. Biochim Biophys Acta 1778(11):2526–2534

    Article  CAS  PubMed  Google Scholar 

  18. Ye W, Lind J, Eriksson J et al (2014) Characterization of the morphology of fast-tumbling bicelles with varying composition. Langmuir 30(19):5488–5496

    Article  CAS  PubMed  Google Scholar 

  19. Nieh M-P, Dolinar P, Kučerka N et al (2011) Formation of kinetically trapped nanoscopic unilamellar vesicles from metastable nanodiscs. Langmuir 27(23):14308–14316

    Article  CAS  PubMed  Google Scholar 

  20. Soong R, Nieh M-P, Nicholson E et al (2010) Bicellar mixtures containing pluronic F68: morphology and lateral diffusion from combined SANS and PFG NMR studies. Langmuir 26(4):2630–2638

    Article  CAS  PubMed  Google Scholar 

  21. Yang P-W, Liu T-L, Hu Y et al (2012) Small-Angle X-ray Scattering studies on the structure of mixed DPPC/diC7PC micelles in aqueous solutions. Chinese Journal of Physics 50(2):349–356

    CAS  Google Scholar 

  22. Li M, Morales HH, Katsaras J et al (2013) Morphological characterization of DMPC/CHAPSO bicellar mixtures: a combined SANS and NMR study. Langmuir 29(51):15943–15957

    Article  CAS  PubMed  Google Scholar 

  23. Nieh M-P, Raghunathan VA, Kline SR et al (2005) Spontaneously formed unilamellar vesicles with path-dependent size distribution. Langmuir 21(15):6656–6661

    Article  CAS  PubMed  Google Scholar 

  24. Nieh M-P, Raghunathan VA, Pabst G et al (2011) Temperature driven annealing of perforations in bicellar model membranes. Langmuir 27(8):4838–4847

    Article  CAS  PubMed  Google Scholar 

  25. Mahabir S, Wan W, Katsaras J et al (2010) Effects of charge density and thermal history on the morphologies of spontaneously formed unilamellar vesicles. J Phys Chem B 114(17):5729–5735

    Article  CAS  PubMed  Google Scholar 

  26. Hu A, Fan T-H, Katsaras J et al (2014) Lipid-based nanodiscs as models for studying mesoscale coalescence--a transport limited case. Soft Matter 10(28):5055–5060

    Article  CAS  PubMed  Google Scholar 

  27. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39(6):895–900

    Article  CAS  Google Scholar 

  28. Liu Y, Li M, Yang Y et al (2014) The effects of temperature, salinity, concentration and PEGylated lipid on the spontaneous nanostructures of bicellar mixtures. Biochim Biophys Acta 1838(7):1871–1880

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding support from NSF-CMMI 1131587 and CBET 1433903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-Ping Nieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, Y., Xia, Y., Rad, A.T., Aresh, W., Nieh, MP. (2017). Stable Discoidal Bicelles: A Platform of Lipid Nanocarriers for Cellular Delivery. In: D'Souza, G. (eds) Liposomes. Methods in Molecular Biology, vol 1522. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6591-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6591-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6589-2

  • Online ISBN: 978-1-4939-6591-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics