Skip to main content

Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

Gene expression is regulated in part through the reversible acetylation of histones, by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). HAT activity results in the addition of acetyl groups on the lysine residues of histone tails leading to decondensation of the chromatin, and increased gene transcription in general, whereas HDACs remove these acetyl groups, thus leading to an overall suppression of gene transcription. Recent evidence has elucidated that histones are not the only components of the proteome that are targeted by HATs and HDACs. A large number of nonhistone proteins undergo posttranslational acetylation. They include proteins involved in mRNA stability, protein localization and degradation, as well as protein–protein and protein–DNA interactions. In recent years, numerous studies have discovered increased HDAC expression and/or activity in numerous disease states, including cancer, where the upregulation of HDAC family members leads to dysregulation of genes and proteins involved in cell proliferation, cell cycle regulation, and apoptosis. These observations have pushed HDAC inhibitors (HDACi) to the forefront of therapeutic development of oncological conditions. HDACi, such as Vorinostat (Suberoylanilide hydroxamic acid (SAHA)), affect cancer cells in part by suppressing the translation of key proteins linked to tumorigenesis, such as cyclin D1 and hypoxia inducible factor 1 alpha (HIF-1α). Herein we describe methodologies to analyze the impact of the HDACi Vorinostat on HIF-1α translational regulation and downstream effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Cerbo V, Schneider R (2013) Cancers with wrong HATs: the impact of acetylation. Brief Funct Genomics 12:231–243

    Article  PubMed  Google Scholar 

  2. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  3. Mano T, Suzuki T, Tsuji S, Iwata A (2014) Differential effect of HDAC3 on cytoplasmic and nuclear huntingtin aggregates. PLoS One 9, e111277

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ji Q, Hu H, Yang F, Yuan J, Yang Y et al (2014) CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression. J Cell Sci 127:4679–4691

    Article  PubMed  Google Scholar 

  5. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 101:1241–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yan W, Liu S, Xu E, Zhang J, Zhang Y et al (2013) Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene 32:599–609

    Article  CAS  PubMed  Google Scholar 

  7. Molli PR, Singh RR, Lee SW, Kumar R (2008) MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene 27:1971–1980

    Article  CAS  PubMed  Google Scholar 

  8. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25

    Article  CAS  PubMed  Google Scholar 

  9. Barneda-Zahonero B, Parra M (2012) Histone deacetylases and cancer. Mol Oncol 6:579–589

    Article  CAS  PubMed  Google Scholar 

  10. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU et al (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 92:1300–1304

    Article  CAS  PubMed  Google Scholar 

  11. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE et al (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y et al (2005) Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat 94:11–16

    Article  CAS  PubMed  Google Scholar 

  13. Jung KH, Noh JH, Kim JK, Eun JW, Bae HJ et al (2012) HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. J Cell Biochem 113:2167–2177

    Article  CAS  PubMed  Google Scholar 

  14. Huang BH, Laban M, Leung CH, Lee L, Lee CK et al (2005) Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ 12:395–404

    Article  CAS  PubMed  Google Scholar 

  15. Song J, Noh JH, Lee JH, Eun JW, Ahn YM et al (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113:264–268

    Article  CAS  PubMed  Google Scholar 

  16. Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ et al (2010) Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 18:436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu LM, Yang Z, Zhou L, Zhang F, Xie HY et al (2010) Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in HBV-associated hepatocellular carcinoma. PLoS One 5:e14460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan J, Lou B, Chen W, Zhang J, Lin S et al (2014) Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest. Tumour Biol 35:11523–11532

    Article  CAS  PubMed  Google Scholar 

  19. Feng GW, Dong LD, Shang WJ, Pang XL, Li JF et al (2014) HDAC5 promotes cell proliferation in human hepatocellular carcinoma by up-regulating Six1 expression. Eur Rev Med Pharmacol Sci 18:811–816

    PubMed  Google Scholar 

  20. Moreno DA, Scrideli CA, Cortez MA, de Paula QR, Valera ET et al (2010) Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol 150:665–673

    Article  CAS  PubMed  Google Scholar 

  21. Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M et al (2010) HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 16:3240–3252

    Article  CAS  PubMed  Google Scholar 

  22. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  PubMed  Google Scholar 

  23. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052

    Article  CAS  PubMed  Google Scholar 

  25. Huang L, Pardee AB (2000) Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 6:849–866

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA et al (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A 99:11700–11705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL (2013) Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 9:1509–1526

    Article  CAS  PubMed  Google Scholar 

  28. Elknerova K, Myslivcova D, Lacinova Z, Marinov I, Uherkova L et al (2011) Epigenetic modulation of gene expression of human leukemia cell lines—induction of cell death and senescence. Neoplasma 58:35–44

    Article  CAS  PubMed  Google Scholar 

  29. Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A et al (2002) Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21:427–436

    Article  CAS  PubMed  Google Scholar 

  30. Liang D, Kong X, Sang N (2006) Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle 5:2430–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kong X, Lin Z, Liang D, Fath D, Sang N et al (2006) Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol 26:2019–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutt DM, Roth DM, Vignaud H, Cullin C, Bouchecareilh M (2014) The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS One 9, e106224

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kawamata N, Chen J, Koeffler HP (2007) Suberoylanilide hydroxamic acid (SAHA; vorinostat) suppresses translation of cyclin D1 in mantle cell lymphoma cells. Blood 110:2667–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emmrich S, Engeland F, El-Khatib M, Henke K, Obulkasim A et al (2015) miR-139-5p controls translation in myeloid leukemia through EIF4G2. Oncogene 35(14):1822–1831

    Article  PubMed  Google Scholar 

  35. Sonnemann J, Marx C, Becker S, Wittig S, Palani CD et al (2014) p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer 110:656–667

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Bouchecareilh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hutt, D.M., Roth, D.M., Marchal, C., Bouchecareilh, M. (2017). Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics