Skip to main content

Evaluating the Effect of HDAC8 Inhibition in Malignant Peripheral Nerve Sheath Tumors

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive disease with a dismal prognosis. The disease can occur sporadically or in patients with inherited neurofibromatosis (NF-1). MPNST is typically resistant to therapeutic intervention. Hence, the need for improved therapies is warranted. Several broad spectrum histone deacetylase (HDAC) inhibitors have a high affinity for class I HDAC isoforms. Inhibition of multiple HDAC isoforms often results in undesirable side effects, while inhibiting a single isoform could possibly improve the therapeutic window and limit toxicity. Recently, HDAC8 inhibitors have been developed and in initial preclinical studies, they demonstrate anticancer efficacy. Little is known about the role of HDAC8 in MPNST. We recently revealed an anticancer effect of HDAC8 inhibition in human and murine MPNST models. The goal of our previous study was to determine the potential therapeutic efficacy of HDAC8 inhibition in MPNST. In this chapter, we briefly describe the methods for determining the role of pharmacological HDAC inhibition in MPNST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17:195–211

    CAS  PubMed  Google Scholar 

  2. De Ruijter AJ, van Gennip AH, Carson HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lombardi PM, Cole KE, Dowling DP, Christianson DW (2011) Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 21:735–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Peng L, Seto E, Huang S, Qiu Y (2012) Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation. J Biol Chem 287:29168–29174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki T (2009) Explorative study on isoform-selective histone deacetylase inhibitors. Chem Pharm Bull 57:897–906

    Article  CAS  PubMed  Google Scholar 

  7. Ito T, Ouchida M, Morimoto Y, Yoshida A, Jitsumori Y, Ozaki T, Sonobe H, Inoue H, Shimizu K (2005) Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett 224:311–319

    Article  CAS  PubMed  Google Scholar 

  8. Lubieniecka JM, de Bruijn DR, Su L, van Dijk AH, Subramanian S, van de Rijn M, Poulin N, van Kessel AG, Nielsen TO (2008) Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 68:4303–4310

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen A, Su L, Campbell B, Poulin N, Nielsen TO (2009) Synergism of heat shock protein 90 and histone deacetylase inhibitors in synovial sarcoma. Sarcoma 2009:794901

    Article  PubMed  PubMed Central  Google Scholar 

  10. Su L, Cheng H, Sampaio AV, Nielsen TO, Underhill TM (2010) EGR1 reactivation by histone deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor. Oncogene 29:4352–4361

    Article  CAS  PubMed  Google Scholar 

  11. Mühlenberg T, Zhang Y, Wagner AJ, Grabellus F, Bradner J, Taeger G, Lang H, Taguchi T, Schuler M, Fletcher JA, Bauer S (2009) Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors. Cancer Res 69:6941–6950

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kutko MC, Glick RD, Butler LM, Coffey DC, Rifkind RA, Marks PA, Richon VM, LaQuaglia MP (2003) Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro. Clin Cancer Res 9:5749–5755

    CAS  PubMed  Google Scholar 

  13. Gastaldi T, Bonvini P, Sartori F, Marrone A, Iolascon A, Rosolen A (2006) Plakoglobin is differentially expressed in alveolar and embryonal rhabdomyosarcoma and is regulated by DNA methylation and histone acetylation. Carcinogenesis 27:1758–1767

    Article  CAS  PubMed  Google Scholar 

  14. Lopez G, Liu J, Ren W, Wei W, Wang S, Lahat G, Zhu Q, Bornmann WG, McConkey DJ, Pollock RE, Lev D (2009) Combining PCI-24781, a novel histone deacetylase inhibitor, with chemotherapy for the treatment of soft tissue sarcoma. Clin Cancer Res 15:3472–3483

    Article  CAS  PubMed  Google Scholar 

  15. Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M, Witt O, Deubzer HE, Kulozik AE, Debus J, Weber KJ (2010) Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 78:237–245

    Article  CAS  PubMed  Google Scholar 

  16. Ailenberg A, Silverman M (2003) Differential effects of trichostatin A on gelatinase A expression in 3T3 fibroblasts and HT-1080 fibrosarcoma cells: implications for use of TSA in cancer therapy. Biochem Biophys Res Commun 302:181–185

    Article  CAS  PubMed  Google Scholar 

  17. Shim JS, Kim DH, Kwon HJ (2004) Plakoglobin is a new target gene of histone deacetylase in human fibrosarcoma HT1080 cells. Oncogene 23:1704–1711

    Article  CAS  PubMed  Google Scholar 

  18. Sampson ER, Amin V, Schwarz EM, O'Keefe RJ, Rosier RN (2011) The histone deacetylase inhibitor vorinostat selectively sensitizes fibrosarcoma cells to chemotherapy. J Orthop Res 29:623–632

    Article  CAS  PubMed  Google Scholar 

  19. Hrzenjak A, Moinfar F, Kremser ML, Strohmeier B, Petru E, Zatloukal K, Denk H (2010) Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo. Mol Cancer 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lopez G, Torres KE, Liu J, Hernandez B, Young E, Belousov R, Bolshakov S, Lazar AJ, Slopis JM, McCutcheon IE, McConkey D, Lev D (2011) Autophagic survival in resistance to histone deacetylase inhibitors: novel strategies to treat malignant peripheral nerve sheath tumors. Cancer Res 71:185–196

    Article  CAS  PubMed  Google Scholar 

  21. Lopez G, Torres KE, Lev D (2011) Autophagy blockade enhances HDAC inhibitors' pro-apoptotic effects: potential implications for the treatment of a therapeutic-resistant malignancy. Autophagy 7:440–441

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, Park CG, Kang J (2011) Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep 25:1677–1681

    CAS  PubMed  Google Scholar 

  23. Krämer OH, Mahboobi S, Sellmer A (2014) Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci 35:501–509

    Article  PubMed  Google Scholar 

  24. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkuhler C, Di Marco S (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 101:15064–15069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee H, Rezai-Zadeh N, Seto E (2004) Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol 24:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu R, Winkler J (2000) Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 275:15254–15264

    Article  CAS  PubMed  Google Scholar 

  27. Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM (2000) Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J 350:199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilson BJ, Tremblay AM, Deblois G, Sylvain-Drolet G, Giguère V (2010) An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol Endocrinol 24:1349–1358

    Article  CAS  PubMed  Google Scholar 

  29. Lee H, Sengupta N, Villagra A, Rezai-Zadeh N, Seto E (2006) Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol 26:5259–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waltregny D, Glénisson W, Tran SL, North BJ, Verdin E, Colige A, Castronovo V (2005) Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J 19:966–968

    CAS  PubMed  Google Scholar 

  31. de Leval L, Waltregny D, Boniver J, Young RH, Castronovo V, Oliva E (2006) Use of histone deacetylase 8 (HDAC8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus. Am J Surg Pathol 30:319–327

    Article  PubMed  Google Scholar 

  32. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ (2008) A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22:1026–1034

    Article  CAS  PubMed  Google Scholar 

  33. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, Hero B, Kopp-Schneider A, Westermann F, Ulrich SM, von Deimling A, Fischer M, Witt O (2009) Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15:91–99

    Article  CAS  PubMed  Google Scholar 

  34. Krennhrubec K, Marshall BL, Hedglin M, Verdin E, Ulrich SM (2007) Design and evaluation of “Linkerless” hydroxamic acids as selective HDAC8 inhibitors. Bioorg Med Chem Lett 17:2874–2878

    Article  CAS  PubMed  Google Scholar 

  35. Oehme I, Deubzer HE, Lodrini M, Milde T, Witt O (2009) Targeting of HDAC8 and investigational inhibitors in neuroblastoma. Expert Opin Investig Drugs 18:1605–1617

    Article  CAS  PubMed  Google Scholar 

  36. Vogel KS, Klesse LJ, Velasco-Miguel S, Meyer K, Rushing EJ, Parada LF (1999) Mouse tumor model for neurofibromatosis type 1. Science 286:2176–2179

    Google Scholar 

Download references

Acknowledgement

Grant Support: National Cancer Institute SARC Sarcoma SPORE, # U54CA168512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael E. Pollock M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lopez, G., Pollock, R.E. (2017). Evaluating the Effect of HDAC8 Inhibition in Malignant Peripheral Nerve Sheath Tumors. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics