Skip to main content

Site-Specific N- and O-Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach

  • Protocol
  • First Online:
High-Throughput Glycomics and Glycoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1503))

Abstract

The vast heterogeneity of protein glycosylation, even of a single glycoprotein with only one glycosylation site, can give rise to a set of macromolecules with different physicochemical properties. Thus, the use of orthogonal approaches for comprehensive characterization of glycoproteins is a key requirement. This chapter describes a universal workflow for site-specific N- and O-glycopeptide analysis. In a first step glycoproteins are treated with Pronase to generate glycopeptides containing small peptide sequences for enhanced glycosylation site assignment and characterization. These glycopeptides are then separated and detected using an integrated C18-porous graphitized carbon-liquid chromatography (PGC-LC) setup online coupled to a high-resolution electrospray ionization (ESI)-quadrupole time-of-flight (QTOF)-mass spectrometer operated in a combined higher- and lower-energy CID (stepping-energy CID) mode. The LC-setup allows retention of more hydrophobic glycopeptides on C18 followed by subsequent capturing of C18-unbound (glyco)peptides by a downstream placed PGC stationary phase. Glycopeptides eluted from both columns are then analyzed within a single analysis in a combined data acquisition mode. Stepping-energy CID results in B- and Y-ion fragments originating from the glycan moiety as well as b- and y-ions derived from the peptide part. This allows simultaneous site-specific identification of the glycan and peptide sequence of a glycoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stavenhagen K, Hinneburg H, Thaysen-Andersen M et al (2013) Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J Mass Spectrom 48:627–639

    Article  CAS  PubMed  Google Scholar 

  2. Thaysen-Andersen M, Packer NH (2014) Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteomes. Biochim Biophys Acta 1844:1437–1452

    Article  CAS  PubMed  Google Scholar 

  3. Nilsson J, Halim A, Grahn A, Larson G (2013) Targeting the glycoproteome. Glycoconj J 30:119–136

    Article  CAS  PubMed  Google Scholar 

  4. Alley WR, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 113:2668–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Desaire H (2013) Glycopeptide analysis, recent developments and applications. Mol Cell Proteomics 12:893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zauner G, Koeleman CAM, Deelder AM, Wuhrer M (2010) Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. J Sep Sci 33:903–910

    Article  CAS  PubMed  Google Scholar 

  7. Hua S, Nwosu CC, Strum JS et al (2012) Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal Bioanal Chem 403:1291–1302

    Article  CAS  PubMed  Google Scholar 

  8. Nwosu CC, Huang J, Aldredge D et al (2013) In-gel nonspecific proteolysis for elucidating glycoproteins: a method for targeted protein-specific glycosylation analysis in complex protein mixtures. Anal Chem 85:956–963

    Article  CAS  PubMed  Google Scholar 

  9. Larsen MR, Højrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119

    Article  CAS  PubMed  Google Scholar 

  10. Temporini C, Perani E, Calleri E et al (2007) Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MS pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal Chem 79:355–363

    Article  CAS  PubMed  Google Scholar 

  11. Lewandrowski U, Sickmann A (2010) Online dual gradient reversed-phase/porous graphitized carbon nanoHPLC for proteomic applications. Anal Chem 82:5391–5396

    Article  CAS  PubMed  Google Scholar 

  12. Stavenhagen K, Plomp R, Wuhrer M (2015) Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides. Anal Chem 87:11691–11699

    Article  CAS  PubMed  Google Scholar 

  13. Ruhaak LR, Deelder AM, Wuhrer M (2009) Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem 394:163–174

    Article  CAS  PubMed  Google Scholar 

  14. Jensen PH, Karlsson NG, Kolarich D, Packer NH (2012) Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc 7:1299–1310

    Article  CAS  PubMed  Google Scholar 

  15. Stavenhagen K, Kolarich D, Wuhrer M (2014) Clinical glycomics employing graphitized carbon liquid chromatography–mass spectrometry. Chromatographia 78:307–320

    Article  PubMed  PubMed Central  Google Scholar 

  16. Packer NH, Lawson MA, Jardine DR, Redmond JW (1998) A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 15:737–747

    Article  CAS  PubMed  Google Scholar 

  17. Thaysen-Andersen M, Wilkinson BL, Payne RJ, Packer NH (2011) Site-specific characterisation of densely O-glycosylated mucin-type peptides using electron transfer dissociation ESI-MS/MS. Electrophoresis 32:3536–3545

    Article  CAS  PubMed  Google Scholar 

  18. Alley W, Mechref Y, Novotny MV (2009) Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun Mass Spectrom 23:495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davies MJ, Smith KD, Harbin AM, Hounsell EF (1992) High-performance liquid chromatography of oligosaccharide alditols and glycopeptides on a graphitized carbon column. J Chromatogr 609:125–131

    Article  CAS  PubMed  Google Scholar 

  20. Wagner-Rousset E, Bednarczyk A, Bussat M-C et al (2008) The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry-based strategies. J Chromatogr B 872:23–37

    Article  CAS  Google Scholar 

  21. Hinneburg H, Stavenhagen K, Schweiger-Hufnagel U et al (2016) The art of destruction: optimizing collision energies in quadrupole-time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. J Am Soc Mass Spectrom 27:507–519. doi:10.1007/s13361-015-1308-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kolli V, Dodds ED (2014) Energy-resolved collision-induced dissociation pathways of model N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in a single experiment. Analyst 139:2144–2153

    Article  CAS  PubMed  Google Scholar 

  23. Dodds ED (2012) Gas-phase dissociation of glycosylated peptides ions. Mass Spectrom Rev 31:666–682

    Article  CAS  PubMed  Google Scholar 

  24. Mechref Y (2012) Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr Protoc Protein Sci suppl 68:Unit 12.11

    Google Scholar 

  25. Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B 849:115–128

    Article  CAS  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  27. Wuhrer M, Koeleman CAM, Hokke CH et al (2005) Protein glycosylation analyzed by normal-phase of glycopeptides. Anal Chem 77:886–894

    Article  CAS  PubMed  Google Scholar 

  28. Kolarich D, Weber A, Turecek PL et al (2006) Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics 6:3369–3380

    Article  CAS  PubMed  Google Scholar 

  29. Pabst M, Altmann F (2008) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80:7534–7542

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Wuhrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stavenhagen, K., Hinneburg, H., Kolarich, D., Wuhrer, M. (2017). Site-Specific N- and O-Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach. In: Lauc, G., Wuhrer, M. (eds) High-Throughput Glycomics and Glycoproteomics. Methods in Molecular Biology, vol 1503. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6493-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6493-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6491-8

  • Online ISBN: 978-1-4939-6493-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics