High-Throughput Analysis of IgG Fc Glycopeptides by LC-MS

  • David Falck
  • Bas C. Jansen
  • Noortje de Haan
  • Manfred WuhrerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1503)


This chapter contains a nanoscale liquid chromatography–mass spectrometry method for the glycoform profiling of the conserved Fc N-glycosylation site of monoclonal and polyclonal immunoglobulin G (IgG). It describes in detail LaCyTools, a program for automated data (pre-)processing of the obtained LC-MS data. The minimal sample preparation necessary is explained as well as an optional method for affinity purification of (polyclonal) antibodies from serum or plasma.

After (optional) affinity purification, the pure IgG is cleaved with trypsin. The tryptic glycopeptides are separated almost exclusively on their peptide backbone. This ensures similar response factors for all glycoforms in the MS detection and allows the collection of separate glycoform profiles for different IgG isoforms or allotypes. LaCyTools automatically performs label-free (relative) quantitation of the obtained data after minimal manual input and additionally calculates several quality criteria which can be used for data curation at the level of both individual analytes and entire LC-MS runs.

Key words

Liquid chromatography–mass spectrometry (LC-MS) Glycopeptide analysis Immunoglobulin G High-throughput glycosylation profiling Glycoform profiling Bottom-up proteomics Glycoproteomics Automated data analysis Label-free quantification Quality scores 


  1. 1.
    Beck A, Wagner-Rousset E, Ayoub D, et al. (2013) Characterization of therapeutic antibodies and related products. Anal Chem 85:715–736CrossRefPubMedGoogle Scholar
  2. 2.
    Dotz V, Haselberg R, Shubhakar A, et al. (2015) Mass spectrometry for glycosylation analysis of biopharmaceuticals. Trends Anal Chem 73:1–9CrossRefGoogle Scholar
  3. 3.
    Schwab I, Nimmerjahn F (2014) Role of sialylation in the anti-inflammatory activity of intravenous immunoglobulin—F(ab′)(2) versus Fc sialylation. Clin Exp Immunol 178(Suppl 1):97–99CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bondt A, Rombouts Y, Selman MH, et al. (2014) Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics 13:3029–3039CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jones AJ, Papac DI, Chin EH, et al. (2007) Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17:529–540CrossRefPubMedGoogle Scholar
  6. 6.
    Mimura Y, Sondermann P, Ghirlando R, et al. (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276:45539–45547CrossRefPubMedGoogle Scholar
  7. 7.
    Sesarman A, Vidarsson G, Sitaru C (2010) The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases. Cell Mol Life Sci 67:2533–2550CrossRefPubMedGoogle Scholar
  8. 8.
    Reusch D, Haberger M, Falck D, et al. (2015) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: mass spectrometric methods. MAbs 7:732–742CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
  11. 11.
    Schilling B, Rardin MJ, MacLean BX, et al. (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 11:202–214CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jansen BC, Reiding KR, Bondt A, et al. (2015) MassyTools: a high throughput targeted data processing tool for relative quantitation and quality control developed for glycomic and glycoproteomic MALDI-MS. J Proteome Res 14:5088–5098CrossRefPubMedGoogle Scholar
  13. 13.
    Van Rossum G, Drake FL Jr (1995) Python reference manual. Centrum voor Wiskunde en Informatica, AmsterdamGoogle Scholar
  14. 14.
    Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13:22–30CrossRefGoogle Scholar
  15. 15.
    Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–20CrossRefGoogle Scholar
  16. 16.
    Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9:90–95CrossRefGoogle Scholar
  17. 17.
    Python(x,y). Accessed 21 Aug 2015
  18. 18.
    Anaconda. Accessed 14 July 2015
  19. 19.
    Falck D, Jansen BC, Plomp R, et al. (2015) Glycoforms of immunoglobulin G based biopharmaceuticals are differentially cleaved by trypsin due to the glycoform influence on higher-order structure. J Proteome Res 14:4019–4028CrossRefPubMedGoogle Scholar
  20. 20.
    Switzar L, Giera M, Niessen WM (2013) Protein digestion: an overview of the available techniques and recent developments. J Proteome Res 12:1067–1077CrossRefPubMedGoogle Scholar
  21. 21.
    Hustoft HK, Reubsaet L, Greibrokk T, et al. (2011) Critical assessment of accelerating trypsination methods. J Pharm Biomed Anal 56:1069–1078CrossRefPubMedGoogle Scholar
  22. 22.
    Rombouts Y, Ewing E, van de Stadt LA, et al. (2015) Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis 74:234–241CrossRefPubMedGoogle Scholar
  23. 23.
    Kessner D, Chambers M, Burke R, et al. (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pluskal T, Castillo S, Villar-Briones A, et al. (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Biochem 11:395Google Scholar
  25. 25.
    Strohalm M, Kavan D, Novák P, et al. (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651CrossRefPubMedGoogle Scholar
  26. 26.
    Geany. Accessed 15 Oct 2015
  27. 27.
  28. 28.
    Microsoft Excel. Accessed 3 Nov 2015

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • David Falck
    • 1
  • Bas C. Jansen
    • 1
  • Noortje de Haan
    • 1
  • Manfred Wuhrer
    • 1
    • 2
    Email author
  1. 1.Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Division of BioAnalytical ChemistryVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations