Skip to main content

Purification of Polyhistidine-Tagged Proteins

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1485))

Abstract

His-tagging is the most widespread and versatile strategy used to purify recombinant proteins for biochemical and structural studies. Recombinant DNA methods are first used to engineer the addition of a short tract of poly-histidine tag (His-tag) to the N-terminus or C-terminus of a target protein. The His-tag is then exploited to enable purification of the “tagged” protein by Immobilized Metal Affinity Chromatography (IMAC). Here, we describe efficient procedures for the isolation of highly purified His-tagged target proteins from an E. coli host using IMAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    Article  CAS  PubMed  Google Scholar 

  2. Hochuli E, Dobeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177–184

    Article  CAS  PubMed  Google Scholar 

  3. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  PubMed  Google Scholar 

  4. Loughran ST, Loughran NB, Ryan BJ, D’Souza BN, Walls D (2006) Modified Histag fusion vector for enhanced protein purification by immobilized metal affinity chromatography. Anal Biochem 355:148–150

    Google Scholar 

  5. Song H, Park EJ, Shin Y-H, Kim HS, Na DH (2012) Effect of polyhistidine-tagging site on the stability of recombinant alginate lyase from Streptomyces sp. ALG-5. J Pharm Invest 42(1):15–19

    Article  CAS  Google Scholar 

  6. Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:63

    PubMed  PubMed Central  Google Scholar 

  7. Cline SD, Saleem S, Daines DA (2012) Regulation of the vapBC-1 toxin-antitoxin locus in nontypeable Haemophilus influenzae. PLoS One 7(3)

    Google Scholar 

  8. Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    Article  PubMed  Google Scholar 

  9. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4:235–251

    Article  PubMed  PubMed Central  Google Scholar 

  10. Villarejo MR, Zabin I (1974) Beta-galactosidase from termination and deletion mutant strains. J Bacteriol 120:466–474

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Google Scholar 

  12. Grosjean H, Fiers W (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209

    Article  CAS  PubMed  Google Scholar 

  13. Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207:365–377

    Article  CAS  PubMed  Google Scholar 

  14. Liu Z, Bartlow P, Varakala R, Beitle R, Koepsel R, Ataai MM (2009) Use of proteomics for design of a tailored host cell for highly efficient protein purification. J Chromatogr A 1216:2433–2438

    Article  CAS  PubMed  Google Scholar 

  15. Ren G, Gong X, Wang B, Chen Y, Huang J (2015) Affinity ionic liquids for the rapid liquid–liquid extraction purification of hexahistidine tagged proteins. Sep Purif Technol 146:114–120

    Article  CAS  Google Scholar 

  16. Cass B, Pham PL, Kamen A, Durocher Y (2005) Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme. Protein Expr Purif 40(1):77–85

    Article  CAS  PubMed  Google Scholar 

  17. Saraswat M, Musante L, Ravid A, Shortt B, Byrne B, Holthofer H (2013) Preparative purification of recombinant proteins: current status and future trends. BioMed Res Int 2013:312709

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liao Y, Cheng Y, Li Q (2007) Preparation of nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6× histidine-tagged proteins. J Chromatogr A 1143(1–2):65–71

    Article  CAS  PubMed  Google Scholar 

  19. Li P, Li L, Zhao Y, Sun L, Zhang Y (2016) Selective binding and magnetic separation of histidine-tagged proteins using Fe3O4/Cu-apatite nanoparticles. J Inorg Biochem 156:49–54

    Article  CAS  PubMed  Google Scholar 

  20. Yao S, Yan X, Zhao Y, Li B, Sun L (2014) Selective binding and magnetic separation of histidine-tagged proteins using Ni 2 þ-decorated Fe3O4/hydroxyapatite composite nanoparticles. Mater Lett 126:97–100

    Article  CAS  Google Scholar 

  21. Zhang L, Zhu X, Jiao D, Sun Y, Sun H (2013) Efficient purification of His-tagged protein by superparamagnetic Fe3O4/Au–ANTA–Co2+ nanoparticles. Mater Sci Eng C 33(4):1989–1992

    Article  CAS  Google Scholar 

  22. Oślizło A, Miernikiewicz P, Piotrowicz A, Owczarek B, Kopciuch A, Figura G, Dąbrowska K (2011) Purification of phage display-modified bacteriophage T4 by affinity chromatography. BMC Biotechnol 11:59

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ceglarek I, Piotrowicz A, Lecion D, Miernikiewicz P, Owczarek B, Hodyra K, Harhala M, Górski A, Dąbrowska K (2013) A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display. Sci Rep 3:3220

    Article  PubMed  PubMed Central  Google Scholar 

  24. Murata A, Arai S, Yoon SI, Takabayashi M, Ozaki M, Takeoka S (2010) Construction of a “turn-on” fluorescent probe system for His-tagged proteins. Bioorg Med Chem Lett 20(23):6905–6908

    Article  CAS  PubMed  Google Scholar 

  25. Uchinomiya S, Nonaka H, Wakayama S, Ojida A, Hamachi I (2013) In-cell covalent labeling of reactive His-tag fused proteins. Chem Commun (Camb) 49(44):5022–5024

    Article  CAS  Google Scholar 

  26. Hintersteiner M, Weidemann T, Kimmerlin T, Filiz N, Buehler C, Auer M (2008) Covalent fluorescence labeling of his-tagged proteins on the surface of living cells. ChemBioChem 9(9):1391–1395

    Article  CAS  PubMed  Google Scholar 

  27. Goldsmith CR, Jaworski J, Sheng M, Lippard SJ (2006) Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein-nitrilotriacetic acid conjugate. J Am Chem Soc 128(2):418–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai Y-T, Chang Y-Y, Hu L, Yang Y, Chao A, Du Z-Y, Tanner JA, Chye M-L, Qian C, Ng K-M, Li H, Sun H (2015) Rapid labeling of intracellular His-tagged proteins in living cells. Proc Natl Acad Sci 112(10):2948–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Badar A, DeFreitas S, McDonnell JM, Yahya N, Thakor D, Razavi R, Smith R, Sacks S, Mullen GED (2011) Recombinant complement receptor 2 radiolabeled with [99mTc(CO)3]+: a potential new radiopharmaceutical for imaging activated Complement. PLoS One 6(4)

    Google Scholar 

  30. Waibel R, Alberto R, Willuda J, Finnern R, Schibli R, Stichelberger A, Egli A, Abram U, Mach JP, Plückthun A, Schubiger PA (1999) Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol 17(9):897–901

    Article  CAS  PubMed  Google Scholar 

  31. Shimada J, Maruyama T, Hosogi T, Tominaga J, Kamiya N, Goto M (2008) Conjugation of DNA with protein using His-tag chemistry and its application to the aptamer-based detection system. Biotechnol Lett 30(11):2001–2006

    Article  CAS  PubMed  Google Scholar 

  32. Tsuji S, Tanaka T, Hirabayashi N, Kato S, Akitomi J, Egashira H, Waga I, Ohtsu T (2009) RNA aptamer binding to polyhistidine-tag. Biochem Biophys Res Commun 386(1):227–231

    Article  CAS  PubMed  Google Scholar 

  33. Ghiotto F, Fais F, Bruno S (2010) BH3-only proteins: the death-Puppeteer’s wires. Cytometry A 77(1):11–21

    PubMed  Google Scholar 

  34. Holmberg M, Hansen TS, Lind JU, Hjortø GM (2012) Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene. Colloids Surf B Biointerfaces 92:286–292

    Article  CAS  PubMed  Google Scholar 

  35. Kimple ME, Sondek J (2004) Overview of affinity tags for protein purification. Curr Protoc Protein Sci. Chapter 9, Unit 9.9

    Google Scholar 

  36. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80(2):283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tropea JE, Cherry S, Waugh DS (2009) Expression and purification of soluble His6-tagged TEV protease. Methods Mol Biol 498:297–307

    Article  CAS  PubMed  Google Scholar 

  38. Zhang M, Martin JL, Kumar M, Khairallah RJ, de Tombe PP (2015) Rapid large scale purification of myofilament proteins using a cleavable His 6-tag. Am J Physiol Heart Circ Physiol 309(9):H1509–H1515

    Article  CAS  PubMed  Google Scholar 

  39. Xu CG, Fan XJ, Fu YJ, Liang AH (2008) Effect of location of the His-tag on the production of soluble and functional Buthus Martensii Karsch insect toxin. Protein Expr Purif 59:103–109

    Article  CAS  PubMed  Google Scholar 

  40. Grisshammer R, White JF, Trinh LB, Shiloach J (2005) Large-scale expression and purification of a G-protein-coupled receptor for structure determination—an overview. J Struct Funct Genomics 6:159–163

    Article  CAS  PubMed  Google Scholar 

  41. Yeliseev AA, Wong KK, Soubias O, Gawrisch K (2005) Expression of human peripheral cannabinoid receptor for structural studies. Protein Sci 14:2638–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  CAS  PubMed  Google Scholar 

  43. Manjasetty BA, Turnbull AP, Panjikar S, Bussow K, Chance MR (2008) Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics 8:612–625

    Article  CAS  PubMed  Google Scholar 

  44. Magnusdottir A, Johansson I, Dahlgren LG, Nordlund P, Berglund H (2009) Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat Methods 6:477–478

    Article  CAS  PubMed  Google Scholar 

  45. Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103

    Article  CAS  PubMed  Google Scholar 

  46. Hunt GR, Stieber RW (1986) Inoculum development. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 32–40

    Google Scholar 

  47. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  48. Grodberg J, Dunn JJ (1988) OmpT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kreisig T, Prasse AA, Zscharnack K, Volke D, Zuchner T (2014) His-tag protein monitoring by a fast mix-and-measure immunoassay. Sci Rep 4:5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad T. Loughran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Loughran, S.T., Bree, R.T., Walls, D. (2017). Purification of Polyhistidine-Tagged Proteins. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 1485. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6412-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6412-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6410-9

  • Online ISBN: 978-1-4939-6412-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics