Skip to main content

Analysis of MicroRNA Function in Drosophila

  • Protocol
  • First Online:
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1478))

Abstract

MicroRNAs are short noncoding, ~22-nucleotide RNAs that regulate protein abundance. The growth in our understanding of this class of RNAs has been rapid since their discovery just over a decade ago. We now appreciate that miRNAs are deeply embedded within the genetic networks that control basic features of metazoan cells including their identity, metabolism, and reproduction. The Drosophila melanogaster model system has made and will continue to make important contributions to this analysis. Intended as an introductory overview, here we review the current methods and resources available for functional analysis of fly miRNAs for those interested in performing this type of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488

    Article  CAS  PubMed  Google Scholar 

  2. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    Article  CAS  PubMed  Google Scholar 

  3. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  PubMed  Google Scholar 

  4. Sokol NS (2008) An overview of the identification, detection, and functional analysis of Drosophila microRNAs. Methods Mol Biol 420:319–334

    Article  CAS  PubMed  Google Scholar 

  5. Stark A et al (2007) Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res 17(12):1865–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berezikov E et al (2010) Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat Genet 42(1):6–9, author reply 9–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berezikov E et al (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21(2):203–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chung WJ et al (2011) Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res 21(2):286–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruby JG et al (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17(12):1850–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wen J et al (2014) Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines. Genome Res 24(7):1236–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lau NC et al (2009) Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 19(10):1776–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Graveley BR et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471(7339):473–479

    Article  CAS  PubMed  Google Scholar 

  14. Liu N et al (2011) The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila. Curr Biol 21(22):1888–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han BW et al (2011) The 3'-to-5' exoribonuclease Nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 21(22):1878–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chawla G, Sokol NS (2014) ADAR mediates differential expression of polycistronic microRNAs. Nucleic Acids Res 42(8):5245–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okamura K et al (2013) Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev 27(7):778–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biemar F et al (2005) Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc Natl Acad Sci U S A 102(44):15907–15911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19(19):2343–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kwon C et al (2005) MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 102(52):18986–18991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weng R, Cohen SM (2012) Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development 139(8):1427–1434

    Article  CAS  PubMed  Google Scholar 

  22. Teleman AA, Maitra S, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chawla G, Sokol NS (2012) Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function. Development 139(10):1788–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schertel C et al (2012) Functional characterization of Drosophila microRNAs by a novel in vivo library. Genetics 192(4):1543–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pressman S et al (2012) A systematic genetic screen to dissect the MicroRNA pathway in Drosophila. G3 (Bethesda) 2(4):437–448

    Article  CAS  Google Scholar 

  26. Luhur A et al (2014) Drosha-independent DGCR8/Pasha pathway regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 111(4):1421–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brennecke J et al (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36

    Article  CAS  PubMed  Google Scholar 

  28. Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19(9):1067–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stark A et al (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1(3):E60

    Article  PubMed  PubMed Central  Google Scholar 

  30. Forstemann K et al (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7):e236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Brennecke J et al (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yoo B et al (2014) Detection of miRNA expression in intact cells using activatable sensor oligonucleotides. Chem Biol 21(2):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toledano H et al (2012) Dual fluorescence detection of protein and RNA in Drosophila tissues. Nat Protoc 7(10):1808–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aboobaker AA et al (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A 102(50):18017–18022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kosman D et al (2004) Multiplex detection of RNA expression in Drosophila embryos. Science 305(5685):846

    Article  CAS  PubMed  Google Scholar 

  36. Stark A et al (2008) A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev 22(1):8–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomson JM et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20(16):2202–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soni K et al (2013) miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Nucleic Acids Res 41(8):4470–4480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123(7):1267–1277

    Article  CAS  PubMed  Google Scholar 

  40. Kucherenko MM et al (2012) Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J 31(24):4511–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lemons D, Pare A, McGinnis W (2012) Three Drosophila Hox complex microRNAs do not have major effects on expression of evolutionarily conserved Hox gene targets during embryogenesis. PLoS One 7(2):e31365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marrone AK et al (2012) Dg-Dys-Syn1 signaling in Drosophila regulates the microRNA profile. BMC Cell Biol 13:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toledano H et al (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485(7400):605–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Laneve P, Giangrande A (2014) Enhanced northern blot detection of small RNA species in Drosophila melanogaster. J Vis Exp. doi:10.3791/51814

    PubMed  PubMed Central  Google Scholar 

  45. Okamura K et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varallyay E, Burgyan J, Havelda Z (2007) Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43(2):140–145

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y et al (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5(4):e1000444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Varghese J, Cohen SM (2007) microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev 21(18):2277–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen C et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Liu N et al (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482(7386):519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Esslinger SM et al (2013) Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol 10(6):1042–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daneshvar K et al (2013) MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila. Biol Open 2(1):1–9

    Article  CAS  PubMed  Google Scholar 

  53. Friedlander MR et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415

    Article  PubMed  CAS  Google Scholar 

  54. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    Article  CAS  PubMed  Google Scholar 

  56. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hyun S et al (2009) Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139(6):1096–1108

    Article  CAS  PubMed  Google Scholar 

  59. Karres JS et al (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131(1):136–145

    Article  CAS  PubMed  Google Scholar 

  60. Luo W, Sehgal A (2012) Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit. Cell 148(4):765–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Varghese J, Lim SF, Cohen SM (2010) Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev 24(24):2748–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu YC et al (2012) Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev Cell 23(1):202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chi SW, Hannon GJ, Darnell RB (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19(3):321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chi SW et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Smibert P et al (2012) Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 1(3):277–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rehmsmeier M et al (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13(8):1198–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kadener S et al (2009) A role for microRNAs in the Drosophila circadian clock. Genes Dev 23(18):2179–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hafner M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zisoulis DG et al (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17(2):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Helwak A et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee GJ, Hyun S (2014) Multiple targets of the microRNA miR-8 contribute to immune homeostasis in Drosophila. Dev Comp Immunol 45(2):245–251

    Article  CAS  PubMed  Google Scholar 

  73. Yatsenko AS, Shcherbata HR (2014) Drosophila miR-9a targets the ECM receptor Dystroglycan to canalize myotendinous junction formation. Dev Cell 28(3):335–348

    Article  CAS  PubMed  Google Scholar 

  74. Li Y et al (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 20(20):2793–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bejarano F, Smibert P, Lai EC (2010) miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Dev Biol 338(1):63–73

    Article  CAS  PubMed  Google Scholar 

  76. Weng R et al (2013) miR-124 controls male reproductive success in Drosophila. Elife 2:e00640

    Article  PubMed  PubMed Central  Google Scholar 

  77. Iovino N, Pane A, Gaul U (2009) miR-184 has multiple roles in Drosophila female germline development. Dev Cell 17(1):123–133

    Article  CAS  PubMed  Google Scholar 

  78. Hilgers V, Bushati N, Cohen SM (2010) Drosophila microRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis. PLoS Biol 8(6):e1000396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cayirlioglu P et al (2008) Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 319(5867):1256–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsurudome K et al (2010) The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron 68(5):879–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pancratov R et al (2013) The miR-310/13 cluster antagonizes beta-catenin function in the regulation of germ and somatic cell differentiation in the Drosophila testis. Development 140(14):2904–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caygill EE, Johnston LA (2008) Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 18(13):943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bassett AR et al (2014) Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nat Commun 5:4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Becam I et al (2011) Notch-mediated repression of bantam miRNA contributes to boundary formation in the Drosophila wing. Development 138(17):3781–3789

    Article  CAS  PubMed  Google Scholar 

  85. Bejarano F et al (2012) A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139(15):2821–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Szuplewski S et al (2012) MicroRNA transgene overexpression complements deficiency-based modifier screens in Drosophila. Genetics 190(2):617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim K, Vinayagam A, Perrimon N (2014) A rapid genome-wide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep 7(6):2066–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43(6):892–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sokol NS et al (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 22(12):1591–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bender W (2008) MicroRNAs in the Drosophila bithorax complex. Genes Dev 22(1):14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bushati N et al (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol 18(7):501–506

    Article  CAS  PubMed  Google Scholar 

  92. Chen Z et al (2012) miR-92b regulates Mef2 levels through a negative-feedback circuit during Drosophila muscle development. Development 139(19):3543–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Friggi-Grelin F, Lavenant-Staccini L, Therond P (2008) Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics 179(1):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kugler JM et al (2013) Maternal loss of miRNAs leads to increased variance in primordial germ cell numbers in Drosophila melanogaster. G3 (Bethesda) 3(9):1573–1576

    Article  CAS  Google Scholar 

  95. Kugler JM et al (2013) miR-989 is required for border cell migration in the Drosophila ovary. PLoS One 8(7):e67075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li W et al (2013) MicroRNA-276a functions in ellipsoid body and mushroom body neurons for naive and conditioned olfactory avoidance in Drosophila. J Neurosci 33(13):5821–5833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun K et al (2012) Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet 8(2):e1002515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu P et al (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795

    Article  CAS  PubMed  Google Scholar 

  99. Loya CM et al (2009) Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 6(12):897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Horwich MD, Zamore PD (2008) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 3(10):1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gehrke S et al (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466(7306):637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Leaman D et al (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121(7):1097–1108

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Sokol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chawla, G., Luhur, A., Sokol, N. (2016). Analysis of MicroRNA Function in Drosophila . In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 1478. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6371-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6371-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6369-0

  • Online ISBN: 978-1-4939-6371-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics