Skip to main content

Immobilized MutS-Mediated Error Removal of Microchip-Synthesized DNA

  • Protocol
  • First Online:
Synthetic DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1472))

Abstract

Applications of microchip-synthesized oligonucleotides for de novo gene synthesis are limited primarily by their high error rates. The mismatch binding protein MutS, which can specifically recognize and bind to mismatches, is one of the cheapest tools for error correction of synthetic DNA. Here, we describe a protocol for removing errors in microchip-synthesized oligonucleotides and for the assembly of DNA segments using these oligonucleotides. This protocol can also be used in traditional de novo gene DNA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carr PA, Church GM (2009) Genome engineering. Nat Biotechnol 27:1151–1162

    Article  CAS  PubMed  Google Scholar 

  3. Gibson DG, Benders GA, Andrews-Pfannkoch C et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi H, Kaern M, Araki M et al (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 101:8414–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stemmer WPC, Crameri A, Ha KD et al (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164:49–53

    Article  CAS  PubMed  Google Scholar 

  6. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kosuri S, Eroshenko N, LeProust EM et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao XL, LeProust E, Zhang H et al (2001) A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res 29:4744–4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quan JY, Saaem I, Tang N et al (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29:449–452

    Article  CAS  PubMed  Google Scholar 

  10. Tian JD, Gong H, Sheng NJ et al (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432:1050–1054

    Article  CAS  PubMed  Google Scholar 

  11. Richmond KE, Li MH, Rodesch MJ et al (2004) Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res 32:5011–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou X, Cai S, Hong A et al (2004) Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res 32:5409–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim C, Kaysen J, Richmond K et al (2006) Progress in gene assembly from a MAS-driven DNA microarray. Microelectron Eng 83:1613–1616

    Article  CAS  Google Scholar 

  14. Cleary MA, Kilian K, Wang YQ et al (2004) Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat Methods 1:241–248

    Article  CAS  PubMed  Google Scholar 

  15. Linshiz G, Ben Yehezkel T, Kaplan S et al (2008) Recursive construction of perfect DNA molecules from imperfect oligonucleotides. Mol Syst Biol 4:1–10

    Article  Google Scholar 

  16. Wan W, Li L, Xu Q et al (2014) Error removal in microchip-synthesized DNA using immobilized MutS. Nucleic Acids Res 42, e102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30, e43

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brown J, Brown T, Fox KR (2001) Affinity of mismatch-binding protein MutS for heteroduplexes containing different mismatches. Biochem J 354:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho M, Chung S, Heo SD et al (2007) A simple fluorescent method for detecting mismatched DNAs using a MutS-fluorophore conjugate. Biosens Bioelectron 22:1376–1381

    Article  CAS  PubMed  Google Scholar 

  20. Hong J, Ye X, Wang Y et al (2008) Bioseparation of recombinant cellulose-binding module-proteins by affinity adsorption on an ultra-high-capacity cellulosic adsorbent. Anal Chim Acta 621:193–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid from the National Natural Science Foundation of China (31270149), the National High Technology Research and Development Program (2012AA02A708), Anhui Provincial Natural Science Foundation (1608085MC47),the Fundamental Research Funds for the Central Universities (WK2070000059), the China Postdoctoral Science Foundation (2015M580546). This work also earned technical support from the Core Facility Center for Life Sciences, University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wan, W., Wang, D., Gao, X., Hong, J. (2017). Immobilized MutS-Mediated Error Removal of Microchip-Synthesized DNA. In: Hughes, R. (eds) Synthetic DNA. Methods in Molecular Biology, vol 1472. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6343-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6343-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6341-6

  • Online ISBN: 978-1-4939-6343-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics