Skip to main content

Affinity Capillary Electrophoresis Applied to Investigation of Valinomycin Complexes with Ammonium and Alkali Metal Ions

  • Protocol
  • First Online:
Capillary Electrophoresis of Proteins and Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1466))

Abstract

This chapter deals with the application of affinity capillary electrophoresis (ACE) to investigation of noncovalent interactions (complexes) of valinomycin, a macrocyclic dodecadepsipeptide antibiotic ionophore, with ammonium and alkali metal ions (lithium, sodium, potassium, rubidium, and cesium). The strength of these interactions was characterized by the apparent binding (stability, association) constants (K b) of the above valinomycin complexes using the mobility shift assay mode of ACE. The study involved measurements of effective electrophoretic mobility of valinomycin at variable concentrations of ammonium or alkali metal ions in the background electrolyte (BGE). The effective electrophoretic mobilities of valinomycin measured at ambient temperature and variable ionic strength were first corrected to the reference temperature 25 °C and constant ionic strength (10 or 25 mM). Then, from the dependence of the corrected valinomycin effective mobility on the ammonium or alkali metal ion concentration in the BGE, the apparent binding constants of the valinomycin–ammonium or valinomycin–alkali metal ion complexes were determined using a nonlinear regression analysis. Logarithmic form of the binding constants (log K b) were found to be in the range of 1.50–4.63, decreasing in the order Rb+ > K+ > Cs+ > > Na+ > NH4 + ~ Li+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gouaux E, MacKinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310:1461–1465

    Article  CAS  PubMed  Google Scholar 

  2. Shirai O, Yoshida Y, Kihara S (2006) Voltammetric study on ion transport across a bilayer lipid membrane in the presence of a hydrophobic ion or an ionophore. Anal Bioanal Chem 386:494–505

    Article  CAS  PubMed  Google Scholar 

  3. Rose L, Jenkins ATA (2007) The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry 70:387–393

    Article  CAS  PubMed  Google Scholar 

  4. Varma S, Sabo D, Rempe SB (2008) K+/Na + selectivity in K channels and valinomycin: Over-coordination versus cavity-size constraints. J Mol Biol 376:13–22

    Article  CAS  PubMed  Google Scholar 

  5. Pressman BC (1976) Biological Applications of Ionophores. Annual Review of Biochemistry 45:501–530

    Article  CAS  PubMed  Google Scholar 

  6. Ovchinnikov YA (1979) Physicochemical Basis of Ion-Transport Through Biological-Membranes - Ionophores and Ion Channels. Eur J Biochem 94:321–336

    Article  CAS  PubMed  Google Scholar 

  7. Wang F, Zhao CX, Polavarapu PL (2004) A study of the conformations of valinomycin in solution phase. Biopolymers 75:85–93

    Article  PubMed  Google Scholar 

  8. Izatt RM, Bradshaw JS, Nielsen SA et al (1985) Thermodynamic and Kinetic Data for Cation Macrocycle Interaction. Chem Rev 85:271–339

    Article  CAS  Google Scholar 

  9. Ehala S, Kašička V, Makrlík E (2008) Determination of stability constants of valinomycin complexes with ammonium and alkali metal ions by capillary affinity electrophoresis. Electrophoresis 29:652–657

    Article  CAS  PubMed  Google Scholar 

  10. Dybal J, Ehala S, Kašička V et al (2008) Theoretical and Experimental Study of the Complexation of Valinomycin with Ammonium Cation. Biopolymers 89:1055–1060

    Article  CAS  PubMed  Google Scholar 

  11. Ehala S, Dybal J, Makrlík E et al (2009) Capillary affinity electrophoresis and ab initio calculation studies of valinomycin complexation with Na + ion. J Sep Sci 32:597–604

    Article  CAS  PubMed  Google Scholar 

  12. Ehala S, Dybal J, Makrlík E et al (2009) Capillary electrophoretic and computational study of the complexation of valinomycin with rubidium cation. Electrophoresis 30:883–889

    Article  CAS  PubMed  Google Scholar 

  13. Ehala S, Dybal J, Makrlík E et al (2009) Application of capillary affinity electrophoresis and density functional theory to the investigation of valinomycin-lithium complex. J Chromatogr A 1216:3660–3665

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Weber SG (2008) Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Anal Chem 27:738–748

    Article  CAS  Google Scholar 

  15. Ostergaard J, Jensen H, Hoim R (2009) Use of correction factors in mobility shift affinity capillary electrophoresis for weak analyte - ligand interactions. J Sep Sci 32:1712–1721

    Article  PubMed  Google Scholar 

  16. Jiang CX, Armstrong DW (2010) Use of CE for the determination of binding constants. Electrophoresis 31:17–27

    Article  CAS  PubMed  Google Scholar 

  17. Dvořák M, Svobodová J, Beneš M et al (2013) Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Electrophoresis 34:761–767

    Article  PubMed  Google Scholar 

  18. Porras SP, Riekkola ML, Kenndler E (2001) Capillary zone electrophoresis of basic analytes in methanol as non-aqueous solvent - Mobility and ionisation constant. J Chromatogr A 905:259–268

    Article  CAS  PubMed  Google Scholar 

  19. Beckers JL, Ackermans MT, Boček P (2003) Capillary zone electrophoresis in methanol: Migration behavior and background electrolytes. Electrophoresis 24:1544–1552

    Article  CAS  PubMed  Google Scholar 

  20. Kašička V, Prusík Z, Sázelová P et al (1999) Capillary zone electrophoresis with electroosmotic flow controlled by external radial electric field. Electrophoresis 20:2484–2492

    Article  PubMed  Google Scholar 

  21. Papanastasiou GE, Ziogas II (1992) Physical Behavior of Some Reaction Media. 3. Density, Viscosity, Dielectric-Constant, and Refractive-Index Changes of Methanol + Dioxane Mixtures at Several Temperatures. Journal of Chemical and Engineering Data 37:167–172

    Article  CAS  Google Scholar 

  22. Falkenhagen H, Leist M, Kelbg G (1952) *Zur Theorie der Leitfahigkeit Starker Nicht Assoziierender Elektrolyte Bei Hoheren Konzentrationen. Annalen der Physik 11:51–59

    Article  CAS  Google Scholar 

  23. Pitts E (1953) An Extension of the Theory of the Conductivity and Viscosity of Electrolyte Solutions. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 217:43–70

    Article  CAS  Google Scholar 

  24. Muzikář J, van de Goor T, Gaš B et al (2002) Electrophoretic mobilities of large organic ions in nonaqueous solvents: Determination by capillary electrophoresis in propylene carbonate, N, N-dimethylformamide, N, N,- dimethylacetamide, acetonitrile and methanol. Electrophoresis 23:375–382

    Article  PubMed  Google Scholar 

  25. Peng XJ, Bowser MT, Britz-McKibbin P et al (1997) Quantitative description of analyte migration behavior based on dynamic complexation in capillary electrophoresis with one or more additives. Electrophoresis 18:706–716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (grants nos. 203/08/1428 and P206/12/0453), and by the Academy of Sciences of the Czech Republic (Research Project RVO 61388963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Kašička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Štěpánová, S., Kašička, V. (2016). Affinity Capillary Electrophoresis Applied to Investigation of Valinomycin Complexes with Ammonium and Alkali Metal Ions. In: Tran, N., Taverna, M. (eds) Capillary Electrophoresis of Proteins and Peptides. Methods in Molecular Biology, vol 1466. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4014-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4014-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4012-7

  • Online ISBN: 978-1-4939-4014-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics