Skip to main content

Theranostic Imaging of Cancer Gene Therapy

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1461))

Abstract

Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V (2012) Suicide gene therapy in cancer: where do we stand now? Cancer Lett 324:160–170

    Article  CAS  PubMed  Google Scholar 

  2. Sekar TV, Foygel K, Willmann JK, Paulmurugan R (2013) Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging. Gene Ther 20:529–537

    Article  CAS  PubMed  Google Scholar 

  3. Sekar TV, Foygel K, Ilovich O, Paulmurugan R (2014) Noninvasive theranostic imaging of HSV1-sr39TK-NTR/GCV-CB1954 dual-prodrug therapy in metastatic lung lesions of MDA-MB-231 triple negative breast cancer in mice. Theranostics 4:460–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  PubMed  Google Scholar 

  5. Penheiter AR, Russell SJ, Carlson SK (2012) The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 12:33–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buursma AR, Rutgers V, Hospers GA, Mulder NH, Vaalburg W, de Vries EF (2006) 18F-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in-vitro comparison with other PET tracers. Nucl Med Commun 27:25–30

    Article  CAS  PubMed  Google Scholar 

  7. Bar-Shir A, Liu G, Greenberg MM, Bulte JW, Gilad AA (2013) Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat Protoc 8:2380–2391

    Article  CAS  PubMed  Google Scholar 

  8. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, Ivanova A, Ageyeva L, Tourkova V, Balatoni J, Bornmann W, Blasberg R, Gelovani Tjuvajev J (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31:740–751

    Article  CAS  PubMed  Google Scholar 

  9. Bhaumik S, Sekar TV, Depuy J, Klimash J, Paulmurugan R (2012) Noninvasive optical imaging of nitroreductase gene-directed enzyme prodrug therapy system in living animals. Gene Ther 19:295–302

    Article  CAS  PubMed  Google Scholar 

  10. Jin S, Leach JC, Ye K (2009) Nanoparticle-mediated gene delivery. Methods Mol Biol 544:547–557

    Article  CAS  PubMed  Google Scholar 

  11. Howarth JL, Lee YB, Uney JB (2010) Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 26:1–20

    Article  CAS  PubMed  Google Scholar 

  12. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Volpers C, Kochanek S (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6:S164–S171

    Article  CAS  PubMed  Google Scholar 

  14. Green NK, Seymour LW (2002) Adenoviral vectors: systemic delivery and tumor targeting. Cancer Gene Ther 9:1036–1042

    Article  CAS  PubMed  Google Scholar 

  15. Kasala D, Choi JW, Kim SW, Yun CO (2014) Utilizing adenovirus vectors for gene delivery in cancer. Expert Opin Drug Deliv 11:379–392

    Article  CAS  PubMed  Google Scholar 

  16. Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenstein B, Taylor G, Walden S, Wetzel R (1996) A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Human Gene Ther 7:1145–1159

    Article  CAS  Google Scholar 

  17. Pan JG, Zhou X, Luo R, Han RF (2012) The adeno-associated virus-mediated HSV-TK/GCV suicide system: a potential strategy for the treatment of bladder carcinoma. Med Oncol 29:1938–1947

    Article  CAS  PubMed  Google Scholar 

  18. Escors D, Breckpot K (2010) Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 58:107–119

    Article  CAS  Google Scholar 

  19. Devulapally R, Sekar NM, Sekar TV, Foygel K, Massoud TF, Willmann JK, Paulmurugan R (2015) Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano 9:2290–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank the Department of Radiology and Canary Center at Stanford for their facilities and support. The funding support by National Institutes of Health (NIH grant R01 CA161091 and R21 CA185805 to R.P) is gratefully acknowledged. We also thank Dr. Sanjiv Sam Gambhir, Chairman, Department of Radiology, Stanford University, for his constant support. We gratefully acknowledge the use of the SCi3 Core Facility, Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Paulmurugan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sekar, T., Paulmurugan, R. (2016). Theranostic Imaging of Cancer Gene Therapy. In: Kim, S. (eds) Bioluminescence. Methods in Molecular Biology, vol 1461. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3813-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3813-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3811-7

  • Online ISBN: 978-1-4939-3813-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics