Skip to main content

Functional Measurement of Respiratory Muscle Motor Behaviors Using Transdiaphragmatic Pressure

  • Protocol
  • First Online:
Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

The diaphragm muscle must be able to generate sufficient forces to accomplish a range of ventilatory and non-ventilatory behaviors throughout life. Measurements of transdiaphragmatic pressure (Pdi) can be conducted during eupnea, hypoxia (10 % O2)–hypercapnia (5 % CO2), chemical airway stimulation (i.e., sneezing), spontaneously occurring deep breaths (i.e., sighs), sustained airway or tracheal occlusion, and maximal efforts elicited via bilateral phrenic nerve stimulation, representing the full range of motor behaviors available by the diaphragm muscle. We provide detailed methods on the in vivo measurements of Pdi in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126(3287):1345–1347

    Article  CAS  PubMed  Google Scholar 

  2. Mantilla CB, Seven YB, Zhan WZ, Sieck GC (2010) Diaphragm motor unit recruitment in rats. Respir Physiol Neurobiol 173(1):101–106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gill LC, Mantilla CB, Sieck GC (2015) Impact of unilateral denervation on transdiaphragmatic pressure. Respir Physiol Neurobiol 210:14–21. doi:10.1016/j.resp.2015.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sieck GC, Ferreira LF, Reid MB, Mantilla CB (2013) Mechanical properties of respiratory muscles. Compr Physiol 3(4):1553–1567. doi:10.1002/cphy.c130003

    PubMed  PubMed Central  Google Scholar 

  5. Mantilla CB, Sieck GC (2013) Impact of diaphragm muscle fiber atrophy on neuromotor control. Respir Physiol Neurobiol 189(2):411–418. doi:10.1016/j.resp.2013.06.025

    Article  PubMed  Google Scholar 

  6. Mantilla CB, Sieck GC (2011) Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors. Respir Physiol Neurobiol 179(1):57–63. doi:10.1016/j.resp.2011.06.028, S1569-9048(11)00241-2 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mantilla CB, Greising SM, Zhan WZ, Seven YB, Sieck GC (2013) Prolonged C2 spinal hemisection-induced inactivity reduces diaphragm muscle specific force with modest, selective atrophy of type IIx and/or IIb fibers. J Appl Physiol 114(3):380–386. doi:10.1152/japplphysiol.01122.2012

    Article  PubMed  Google Scholar 

  8. Gransee HM, Zhan WZ, Sieck GC, Mantilla CB (2013) Targeted delivery of TrkB receptor to phrenic motoneurons enhances functional recovery of rhythmic phrenic activity after cervical spinal hemisection. PLoS One 8(5):e64755. doi:10.1371/journal.pone.0064755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gransee HM, Zhan WZ, Sieck GC, Mantilla CB (2015) Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J Neurotrauma 32(3):185–193. doi:10.1089/neu.2014.3464

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mantilla CB, Gransee HM, Zhan WZ, Sieck GC (2013) Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Exp Neurol 247C:101–109. doi:10.1016/j.expneurol.2013.04.002

    Article  Google Scholar 

  11. Sieck GC, Fournier M (1989) Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviors. J Appl Physiol 66(6):2539–2545

    CAS  PubMed  Google Scholar 

  12. Sieck GC (1994) Physiological effects of diaphragm muscle denervation and disuse. Clin Chest Med 15(4):641–659

    CAS  PubMed  Google Scholar 

  13. Sieck GC (1991) Neural control of the inspiratory pump. NIPS 6:260–264

    Google Scholar 

  14. Greising SM, Sieck DC, Sieck GC, Mantilla CB (2013) Novel method for transdiaphragmatic pressure measurements in mice. Respir Physiol Neurobiol 188(1):56–59. doi:10.1016/j.resp.2013.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greising SM, Mantilla CB, Medina-Martinez JS, Stowe JM, Sieck GC (2015) Functional impact of diaphragm muscle sarcopenia in both male and female mice. Am J Physiol Lung Cell Mol Physiol 309(1):L46–L52. doi:10.1152/ajplung.00064.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Polkey MI, Harris ML, Hughes PD, Hamnegard CH, Lyons D, Green M, Moxham J (1997) The contractile properties of the elderly human diaphragm. Am J Respir Crit Care Med 155(5):1560–1564

    Article  CAS  PubMed  Google Scholar 

  17. Tolep K, Higgins N, Muza S, Criner G, Kelsen SG (1995) Comparison of diaphragm strength between healthy adult elderly and young men. Am J Respir Crit Care Med 152(2):677–682

    Article  CAS  PubMed  Google Scholar 

  18. Bazzy AR, Haddad GG (1984) Diaphragmatic fatigue in unanesthetized adult sheep. J Appl Physiol 57(1):182–190

    CAS  PubMed  Google Scholar 

  19. Hubmayr RD, Sprung J, Nelson S (1990) Determinants of transdiaphragmatic pressure in dogs. J Appl Physiol 69(6):2050–2056

    CAS  PubMed  Google Scholar 

  20. Watchko JF, Mayock DE, Standaert A, Woodrum DE (1986) Postnatal changes in transdiaphragmatic pressure in piglets. Pediatr Res 20:658–661

    Article  CAS  PubMed  Google Scholar 

  21. Howell S, Maarek JM, Fournier M, Sullivan K, Zhan WZ, Sieck GC (1995) Congestive heart failure: differential adaptation of the diaphragm and latissimus dorsi. J Appl Physiol 79(2):389–397

    CAS  PubMed  Google Scholar 

  22. Sassoon CS, Gruer SE, Sieck GC (1996) Temporal relationships of ventilatory failure, pump failure, and diaphragm fatigue. J Appl Physiol 81(1):238–245

    CAS  PubMed  Google Scholar 

  23. Sassoon CS, Caiozzo VJ, Manka A, Sieck GC (2002) Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol 92(6):2585–2595

    Article  PubMed  Google Scholar 

  24. Medina-Martinez JS, Greising SM, Sieck GC, Mantilla CB (2015) Semi-automated assessment of transdiaphragmatic pressure variability across motor behaviors. Respir Physiol Neurobiol 215:73–81. doi:10.1016/j.resp.2015.05.009

    Article  PubMed  Google Scholar 

  25. American Thoracic Society/European Respiratory Society (2002) ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med 166(4):518–624

    Article  Google Scholar 

  26. Ingalls CP, Warren GL, Lowe DA, Boorstein DB, Armstrong RB (1996) Differential effects of anesthetics on in vivo skeletal muscle contractile function in the mouse. J Appl Physiol 80(1):332–340

    CAS  PubMed  Google Scholar 

  27. Greising SM, Mantilla CB, Gorman BA, Ermilov LG, Sieck GC (2013) Diaphragm muscle sarcopenia in aging mice. Exp Gerontol 48(9):881–887. doi:10.1016/j.exger.2013.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  28. Costanzo MT, Yost RA, Davenport PW (2014) Standardized method for solubility and storage of capsaicin-based solutions for cough induction. Cough 10:6. doi:10.1186/1745-9974-10-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Greising SM, Medina-Martínez JS, Vasdev AK, Sieck GC, Mantilla CB (2015) Analysis of muscle fiber clustering in the diaphragm muscle of sarcopenic mice. Muscle Nerve 52(1):76–82. doi:10.1002/mus.24641

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Any procedures conducted on animals in the development of these methods were conducted following institutional protocols and animal care guidelines, in compliance with National Institute of Health Guidelines.

This work was supported by grants from National Institute of Health R01-AG-044615 and R01-HL-096750 (CBM and GCS), T32-HL105355 (SMG), and the Mayo Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary C. Sieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Greising, S.M., Mantilla, C.B., Sieck, G.C. (2016). Functional Measurement of Respiratory Muscle Motor Behaviors Using Transdiaphragmatic Pressure. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics