A Reporter System to Study Unconventional Secretion of Proteins Avoiding N-Glycosylation in Ustilago maydis

  • Janpeter Stock
  • Marius Terfrüchte
  • Kerstin Schipper
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1459)

Abstract

Unconventional secretion of proteins in eukaryotes is characterized by the circumvention of the Endoplasmic Reticulum (ER). As a consequence proteins exported by unconventional pathways lack N-glycosylation, a post-transcriptional modification that is initiated in the ER during classical secretion. We are exploiting the well-established enzyme β-glucuronidase (GUS) to assay unconventional protein secretion (UPS). This bacterial protein is perfectly suited for this purpose because it carries a eukaryotic N-glycosylation motif. Modification of this residue by attachment of sugar moieties during the passage of the ER apparently causes a very strong reduction in GUS activity. Hence, this enzyme can only be secreted in an active state, if the export mechanism does not involve ER passage. Here, we describe a reporter system applied in the corn smut fungus Ustilago maydis that is based on this observation and can be used to test if candidate proteins are secreted to the culture supernatant via alternative pathways avoiding N-glycosylation. Importantly, this system is the basis for the establishment of genetic screens providing mechanistic insights into unknown UPS pathways in the future.

Key words

β-Glucuronidase (GUS) Unconventional protein secretion (UPS) 4-Methylumbelliferyl-β-D-glucuronide (MUG) N-Glycosylation Ustilago maydis 

Notes

Acknowledgements

We are grateful to Drs. Janine Koepke, Saskia Kreibich, Thomas Brefort, and Regine Kahmann for their input and support, and to Dr. Michael Feldbrügge for critical discussions, comments on the manuscript, and general support. J.S. and M.T. received a fellowship of the Graduate School of the Cluster Industrial Biotechnology 2021 (CLIB-GC) and K.S. was supported by the Strategic Research Fund of the Heinrich-Heine University Düsseldorf. The scientific activities of the Bioeconomy Science Center were supported financially by the Ministry of Innovation, Science and Research within the framework of the NRW Strategieprojekt BioSC (No. 313/323‐400‐002 13).

References

  1. 1.
    Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372(6501):55–63. doi: 10.1038/372055a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450(7170):663–669. doi: 10.1038/nature06384 CrossRefPubMedGoogle Scholar
  3. 3.
    Malhotra V (2013) Unconventional protein secretion: an evolving mechanism. EMBO J 32(12):1660–1664. doi: 10.1038/emboj.2013.104 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rabouille C, Malhotra V, Nickel W (2012) Diversity in unconventional protein secretion. J Cell Sci 125(Pt 22):5251–5255. doi: 10.1242/jcs.103630 CrossRefPubMedGoogle Scholar
  5. 5.
    De Marchis F, Bellucci M, Pompa A (2013) Unconventional pathways of secretory plant proteins from the endoplasmic reticulum to the vacuole bypassing the Golgi complex. Plant Signal Behav 8(8):pii:e25129. doi: 10.4161/psb.25129 CrossRefGoogle Scholar
  6. 6.
    Monteleone M, Stow JL, Schroder K (2015) Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine 74(2):213–218. doi: 10.1016/j.cyto.2015.03.022 CrossRefPubMedGoogle Scholar
  7. 7.
    La Venuta G, Zeitler M, Steringer JP, Müller HM, Nickel W (2015) The startling properties of fibroblast growth factor 2: how to exit mammalian cells without a signal peptide at hand? J Biol Chem. doi: 10.1074/jbc.R115.689257 Google Scholar
  8. 8.
    McGrath JP, Varshavsky A (1989) The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340(6232):400–404. doi: 10.1038/340400a0 CrossRefPubMedGoogle Scholar
  9. 9.
    Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K (2012) Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol 161(2):80–91. doi: 10.1016/j.jbiotec.2012.03.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M (2011) The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol Cell Proteomics 10(12):111–011213. doi: 10.1074/mcp.M111.011213 CrossRefGoogle Scholar
  11. 11.
    Sarkari P, Reindl M, Stock J, Müller O, Kahmann R, Feldbrügge M, Schipper K (2014) Improved expression of single-chain antibodies in Ustilago maydis. J Biotechnol 191:165–175. doi: 10.1016/j.jbiotec.2014.06.028 CrossRefPubMedGoogle Scholar
  12. 12.
    Feldbrügge M, Kellner R, Schipper K (2013) The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol 97(8):3253–3265. doi: 10.1007/s00253-013-4777-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M (2012) Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 36(1):59–77. doi: 10.1111/j.1574-6976.2011.00296.x CrossRefPubMedGoogle Scholar
  14. 14.
    Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Pérez-Martin J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, Gonzalez-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Hauser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101. doi: 10.1038/nature05248 CrossRefPubMedGoogle Scholar
  15. 15.
    Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42(4):1047–1063CrossRefPubMedGoogle Scholar
  16. 16.
    Langner T, Özturk M, Hartmann S, Cord-Landwehr S, Moerschbacher B, Walton JD, Göhre V (2015) Chitinases are essential for cell separation in Ustilago maydis. Eukaryot Cell 14(9):846–857. doi: 10.1128/EC.00022-15 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Langner T, Göhre V (2016) Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 62:243–254CrossRefPubMedGoogle Scholar
  18. 18.
    Haag C, Steuten B, Feldbrügge M (2015) Membrane-coupled mRNA trafficking in fungi. Annu Rev Microbiol 69:265–281. doi: 10.1146/annurev-micro-091014-104242 CrossRefPubMedGoogle Scholar
  19. 19.
    Göhre V, Vollmeister E, Bölker M, Feldbrügge M (2012) Microtubule-dependent membrane dynamics in Ustilago maydis: trafficking and function of Rab5a-positive endosomes. Commun Integr Biol 5(5):485–490CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hull GA, Devic M (1995) The beta-glucuronidase (gus) reporter gene system. Gene fusions; spectrophotometric, fluorometric, and histochemical detection. Methods Mol Biol 49:125–141. doi: 10.1385/0-89603-321-X:125 PubMedGoogle Scholar
  21. 21.
    Iturriaga G, Jefferson RA, Bevan MW (1989) Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell 1(3):381–390. doi: 10.1105/tpc.1.3.381 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Janpeter Stock
    • 1
    • 2
  • Marius Terfrüchte
    • 1
    • 2
  • Kerstin Schipper
    • 1
    • 2
  1. 1.Heinrich Heine University DüsseldorfInstitute for MicrobiologyDüsseldorfGermany
  2. 2.Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülichGermany

Personalised recommendations