Skip to main content

Membrane Protein Production in Lactococcus lactis for Functional Studies

Part of the Methods in Molecular Biology book series (MIMB,volume 1432)

Abstract

Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

Key words

  • Lactococcus lactis
  • Membrane proteins
  • Expression
  • Transport assays

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bakari S, André F, Seigneurin-Berny D, Delaforge M, Rolland N, Frelet-Barrand A (2014) Lactococcus lactis, recent developments in functional expression of membrane proteins. In: Mus-Veteau I (ed) Membrane proteins production for structural analysis. Springer, New-York, USA, pp 107–132, Chapter 5

    Google Scholar 

  2. Kunji ERS, Slotboom DJ, Poolman B (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108

    CrossRef  CAS  PubMed  Google Scholar 

  3. Kunji ERS, Chan KW, Slotboom DJ, Floyd S, O'Connor R, Monné M (2005) Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol 16:546–551

    CrossRef  CAS  PubMed  Google Scholar 

  4. Monné M, Chan KW, Slotboom DJ, Kunji ERS (2005) Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci 14:3048–3056

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N (2011) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 6, e29191

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ERS, Martinou JC (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96

    CrossRef  CAS  PubMed  Google Scholar 

  7. Gasson MJ, de Vos WM (eds) (1994) Genetics and biotechnology of lactic acid bacteria. Blackie Academic and Professional, London, United Kingdom

    Google Scholar 

  8. Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58

    CrossRef  CAS  PubMed  Google Scholar 

  9. Geertsma ER, Poolman B (2007) High-throughput cloning and expression in recalcitrant bacteria. Nat Methods 4:705–707

    CrossRef  CAS  PubMed  Google Scholar 

  10. Frelet-Barrand A, Boutigny S, Moyet L, Deniaud A, Seigneurin-Berny D, Salvi D, Bernaudat F, Richaud P, Pebay-Peyroula E, Joyard J, Rolland N (2010) Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins. PLoS One 5, e8746

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175

    CrossRef  CAS  PubMed  Google Scholar 

  12. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    CrossRef  CAS  PubMed  Google Scholar 

  13. de Ruyter PG, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667

    PubMed  PubMed Central  Google Scholar 

  14. Zhou XX, Li WF, Ma GX, Pan YJ (2006) The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv 24:285–295

    CrossRef  CAS  PubMed  Google Scholar 

  15. Erkens GB, Berntsson RP, Fulyani F, Majsnerowska M, Vujičić-Žagar A, Ter Beek J, Poolman B, Slotboom DJ (2011) The structural basis of modularity in ECF-type ABC transporters. Nat Struct Mol Biol 18:755–760

    CrossRef  CAS  PubMed  Google Scholar 

  16. Berntsson RP, ter Beek J, Majsnerowska M, Duurkens RH, Puri P, Poolman B, Slotboom DJ (2012) Structural divergence of paralogous S components from ECF-type ABC transporters. Proc Natl Acad Sci U S A 109:13990–13995

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malinauskaite L, Quick M, Reinhard L, Lyons JA, Yano H, Javitch JA, Nissen P (2014) A mechanism for intracellular release of Na + by neurotransmitter/sodium symporters. Nat Struct Mol Biol 21:1006–1012

    Google Scholar 

  18. Thangaratnarajah C, Ruprecht JJ, Kunji ERS (2014) Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat Commun 5:5491

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harborne SP, Ruprecht JJ, Kunji ERS (2015) Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. Biochim Biophys Acta 1847:1245–1253

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frelet-Barrand A, Boutigny S, Kunji ER, Rolland N (2010) Membrane protein expression in Lactococcus lactis. Methods Mol Biol 601:67–85

    CrossRef  CAS  PubMed  Google Scholar 

  21. Boutigny S, Sautron E, Frelet-Barrand A, Moyet L, Salvi D, Rolland N, Seigneurin-Berny D (2015) Functional expression of plant membrane proteins in Lactococcus lactis. Methods Mol Biol 1258:147–165

    CrossRef  CAS  PubMed  Google Scholar 

  22. King MS, Boes C, Kunji ERS (2015) Membrane protein expression in Lactococcus lactis. Methods Enzymol 556:77–97

    CrossRef  PubMed  Google Scholar 

  23. Sautron E, Mayerhofer H, Giustini C, Pro D, Crouzy S, Ravaud S, Pebay-Peyroula E, Rolland N, Catty P, Seigneurin-Berny D (2015) HMA6 and HMA8 are two chloroplast Cu + −ATPases with different enzymatic properties. Biosci Rep 35(3): pii:e00201

    Google Scholar 

  24. Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J, Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277:47770–47778

    CrossRef  CAS  PubMed  Google Scholar 

  25. Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, Rolland N (2007) Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J Biol Chem 282:29482–29492

    CrossRef  CAS  PubMed  Google Scholar 

  26. Chang W, Soll J, Bolter B (2014) A new member of the psToc159 family contributes to distinct protein targeting pathways in pea chloroplasts. Front Plant Sci 5:239

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Jager-Vottero P, Dorne AJ, Jordanov J, Douce R, Joyard J (1997) Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci U S A 94:1597–1602

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenzweig AC, Arguello JM (2012) Toward a molecular understanding of metal transport by P(1B)-type ATPases. Curr Top Membr 69:113–136

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arguello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108

    CrossRef  CAS  PubMed  Google Scholar 

  30. Gourdon P, Liu XY, Skjorringe T, Morth JP, Moller LB, Pedersen BP, Nissen P (2011) Crystal structure of a copper-transporting PIB-type ATPase. Nature 475:59–64

    CrossRef  CAS  PubMed  Google Scholar 

  31. Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Catty P, Boutigny S, Miras R, Joyard J, Rolland N, Seigneurin-Berny D (2011) Biochemical characterization of AtHMA6/PAA1, a chloroplast envelope Cu(I)-ATPase. J Biol Chem 286:36188–36197

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kampfenkel K, Möhlmann T, Batz O, Van Montagu M, Inze D, Neuhaus HE (1995) Molecular characterization of an Arabidopsis thaliana cDNA encoding a novel putative adenylate translocator of higher plants. FEBS Lett 374:351–355

    CrossRef  CAS  PubMed  Google Scholar 

  35. Neuhaus HE, Thom E, Möhlmann T, Steup M, Kampfenkel K (1997) Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. Plant J 11:73–82

    CrossRef  CAS  PubMed  Google Scholar 

  36. Trentmann O, Jung B, Neuhaus HE, Haferkamp I (2008) Nonmitochondrial ATP/ADP transporters accept phosphate as third substrate. J Biol Chem 283:36486–36493

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haferkamp I, Fernie AR, Neuhaus HE (2011) Adenine nucleotide transport in plants: much more than a mitochondrial issue. Trends Plant Sci 16:507–515

    CrossRef  CAS  PubMed  Google Scholar 

  38. Tjaden J, Mohlmann T, Kampfenkel K, Henrichs G, Neuhaus HE (1998) Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J 16:531–540

    CrossRef  CAS  Google Scholar 

  39. Kunji ERS (2012) Structural and mechanistic aspects of mitochondrial transport proteins. In: Ferguson S (eds), Comprehensive Biophysics, Elsevier. pp 174–205

    Google Scholar 

  40. Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 37:565–575

    CrossRef  CAS  PubMed  Google Scholar 

  41. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    CrossRef  CAS  PubMed  Google Scholar 

  42. Kunji ERS, Crichton PG (2010) Mitochondrial carriers function as monomers. Biochim Biophys Acta 1797:817–831

    CrossRef  CAS  PubMed  Google Scholar 

  43. Robinson AJ, Kunji ERS (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci U S A 103:2617–2622

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson AJ, Overy C, Kunji ERS (2008) The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 105:17766–17771

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, Mccoy AJ, Kunji ERS (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci U S A 111:E426–E434

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021

    CrossRef  CAS  PubMed  Google Scholar 

  47. Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005) Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin controlled gene expression system NICE: the case of lysostaphin. Microb Cell Fact 4:15

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Hillar A, Loewen PC (1995) Comparison of isoniazid oxidation catalyzed by bacterial catalase-peroxidases and horseradish peroxidase. Arch Biochem Biophys 323:438–446

    CrossRef  CAS  PubMed  Google Scholar 

  49. Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

This study received financial support from the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), the Centre National de la Recherche Scientifique (CNRS), the French National Institute for Agricultural Research (INRA), the University Joseph Fourier (Grenoble), and the Medical Research Council UK. E.S. was funded by a joint grant from the GRAL Labex (Grenoble Alliance for Integrated Structural Cell Biology: ANR-10-LABEX-04) and the CEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Frelet-Barrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Seigneurin-Berny, D. et al. (2016). Membrane Protein Production in Lactococcus lactis for Functional Studies. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 1432. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3637-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3637-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3635-9

  • Online ISBN: 978-1-4939-3637-3

  • eBook Packages: Springer Protocols